Background And Purpose: DLB is recognized as the second major form of dementia in the elderly. The regional pattern of GM atrophy in DLB highly overlaps that in AD. The aim of this study was to identify the critical pattern of atrophy in DLB by using DARTEL, which provides improved registration accuracy compared with that of conventional VBM.

Materials And Methods: We evaluated 51 patients with probable AD, 43 patients with probable DLB, and 40 age-matched healthy controls. The pattern of GM atrophy in each group was compared by using conventional VBM and VBM-DARTEL.

Results: Regional patterns of atrophy identified by using conventional VBM differed significantly from those identified by using VBM-DARTEL. A decrease in GM volume in the MTLs in both AD and DLB was identified with VBM-DARTEL; the decrease was greater in patients with AD than in those with DLB. Comparisons with healthy controls revealed that the WM volume of the whole brain was preserved in patients with DLB. In contrast, a severe bilateral decrease in WM in the MTLs was detected in patients with AD.

Conclusions: VBM-DARTEL provided more accurate results, and it enabled the identification of more localized morphologic alterations than did conventional VBM. Analysis of WM preservation in DLB could help to differentiate this condition from AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7964010PMC
http://dx.doi.org/10.3174/ajnr.A2200DOI Listing

Publication Analysis

Top Keywords

pattern atrophy
12
conventional vbm
12
dlb
8
atrophy dlb
8
compared conventional
8
patients probable
8
healthy controls
8
identified vbm-dartel
8
vbm-dartel decrease
8
patients dlb
8

Similar Publications

Neural deterioration and compensation in visual short-term memory among individuals with amnestic mild cognitive impairment.

Alzheimers Dement

January 2025

Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China.

Introduction: Visual short-term memory (VSTM) is a critical indicator of Alzheimer's disease (AD), but whether its neural substrates could adapt to early disease progression and contribute to cognitive resilience in amnestic mild cognitive impairment (aMCI) has been unclear.

Methods: Fifty-five aMCI patients and 68 normal controls (NC) performed a change-detection task and underwent multimodal neuroimaging scanning.

Results: Among the atrophic brain regions in aMCI, VSTM performance correlated with the volume of the right prefrontal cortex (PFC) but not the medial temporal lobe (MTL), and this correlation was mainly present in patients with greater MTL atrophy.

View Article and Find Full Text PDF

Delayed Progression of Ataxia with a Static Cerebellar Lesion- Consider SCA27B.

Cerebellum

January 2025

Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.

Repeat expansions in the fibroblast growth factor 14 gene (FGF14), associated with spinocerebellar ataxia type 27B (SCA27B), have emerged as a prevalent cause of previously unexplained late-onset cerebellar ataxia. Here, we present a patient with residual symptom of gait ataxia after complicated meningioma surgery, who presented with progressive symptoms of oculomotor disturbances, speech difficulties, vertigo and worsening of gait imbalance, twelve years post-resection. Neuroimaging revealed a surgical resection cavity in the dorsolateral side of the left cerebellar hemisphere, accompanied by gliosis in left cerebellar hemisphere extending into the vermis, extensive non-specific supratentorial periventricular white matter abnormalities, and mild atrophy of the cerebellar vermis.

View Article and Find Full Text PDF

Neural Stem/Progenitor Cell Therapy in Patients and Animals with Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-analysis.

Mol Neurobiol

January 2025

Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative malady that causes progressive degeneration and loss of motor neuron function in the brain and spinal cord, eventually resulting in muscular atrophy, paralysis, and death. Neural stem/progenitor cell (NSPC) transplantation can improve bodily function in animals and delay disease progression in patients with ALS. This paper summarizes and analyzes the efficacy and safety of neural stem/progenitor cell (NSPC) transplantation as a treatment for ALS, aiming to improve function and delay disease progression in patients.

View Article and Find Full Text PDF

Introduction: The MAPT gene encodes Tau, a protein mainly expressed by neurons. Tau protein plays an important role in cerebral microtubule polymerization and stabilization, in axonal transport and synaptic plasticity. Heterozygous pathogenic variation in MAPT are involved in a spectrum of autosomal dominant neurodegenerative diseases known as taupathies, including Alzheimer's disease, Pick's disease, fronto-temporal dementia, cortico-basal degeneration and progressive supranuclear palsy.

View Article and Find Full Text PDF

Brain serotonin dysregulation is associated with dementia and neuropsychiatric symptomology. However, the prognostic utility of circulating serotonin levels in detecting features of prodromal dementia including functional decline, cognitive impairment, mild behavioural impairment and brain atrophy remains unclear. In this prospective study of memory clinic subjects followed-up for ≤5 years, dementia-free subjects, classified as having no cognitive impairment or cognitive impairment, no dementia at baseline, underwent annual neuropsychological assessments including Montreal Cognitive Assessment, Global Cognition scores and Clinical Dementia Rating Scale Global Scores (where a ≥ 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!