This study was designed to investigate the effect of anaerobic digestion on biochar produced from sugarcane bagasse. Sugarcane bagasse was anaerobically digested to produce methane. The digested residue and fresh bagasse was pyrolyzed separately into biochar at 600 degrees C in nitrogen environment. The digested bagasse biochar (DBC) and undigested bagasse biochar (BC) were characterized to determine their physicochemical properties. Although biochar was produced from the digested residue (18% by weight) and the raw bagasse (23%) at a similar rate, there were many physiochemical differences between them. Compared to BC, DBC had higher pH, surface area, cation exchange capacity (CEC), anion exchange capacity (AEC), hydrophobicity and more negative surface charge, all properties that are generally desirable for soil amelioration, contaminant remediation or wastewater treatment. Thus, these results suggest that the pyrolysis of anaerobic digestion residues to produce biochar may be an economically and environmentally beneficial use of agricultural wastes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2010.06.088 | DOI Listing |
Sci Rep
December 2024
Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80526, USA.
Phytophthora blight caused by Phytophthora capsici is a serious disease affecting a wide range of plants. Biochar as a soil amendment could partially replace peat moss and has the potential to suppress plant diseases, but its effects on controlling phytophthora blight of container-grown peppers have less been explored, especially in combination of biological control using Trichoderma. In vitro (petri dish) and in vivo (greenhouse) studies were conducted to test sugarcane bagasse biochar (SBB) and mixed hardwood biochar (HB) controlling effects on pepper phytophthora blight disease with and without Trichoderma.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India.
The present study reports the ability of a fungal isolate DY1, obtained from rotten wood, to degrade alkali lignin (AL) and lignocelluloses in an efficient manner. The efficiency of degradation was monitored by measuring the percentage of decolorization and utilizing GC-MS for identifying degradation products at different time intervals (10, 20, 30, and 40 days). The optimal degradation of alkali lignin (AL) was achieved at 0.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Dipartmento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, 90133 Palermo, Italy.
The complex structure of the plant cell wall makes it difficult to use the biomass produced by biosynthesis. For this reason, the search for new strains of microorganisms capable of efficiently degrading fiber is a topic of interest. For these reasons, the present study aimed to evaluate both the microbiological and enzymatic characteristics of the fungus L7strain.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:
Enzyme Microb Technol
December 2024
Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil. Electronic address:
β-glucosidases (BGLs) are key enzymes in the depolymerization of cellulosic biomass, catalyzing the conversion of cello-oligosaccharides into glucose. This conversion is pivotal for enhancing the production of second-generation ethanol or other value-added products in biorefineries. However, the process is often cost-prohibitive due to the high enzyme loadings required.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!