Background: Improved non-invasive imaging biomarkers of treatment response contribute to optimising cancer management and metabolites detected by proton magnetic resonance spectroscopy ((1)H MRS) show promise in this area. Understanding (1)H MRS changes occurring in cells during cell stress and cell death in vitro should aid the selection of pertinent biomarkers for clinical use.

Methods: BT4C glioma cells in culture were exposed to either 50 μM cis-dichlorodiammineplatinum II (cisplatin) or starvation by culture in phosphate buffered saline. High resolution magic angle spinning (1)H MRS was performed on cells using a Varian 600 MHz nanoprobe and metabolites were quantified by a time domain fitting method. Cell viability was assessed by trypan blue, H&E, 4',6-diamino-2-phenylindole (DAPI), DNA laddering and annexin V-FITC labelled flow cytometry; propidium iodide flow cytometry was used to assess the cell cycle phase.

Results: With cisplatin exposure, cells initially accumulated in the G1 stage of the cell cycle with low numbers of apoptotic and necrotic cells and this was associated with decreases in phosphocholine, succinate, alanine, taurine, glycine and glutamate and increases in lactate and glycerophosphocholine (GPC). Starvation, leading to necrotic cell death within 6-18 h, caused decreases in succinate, alanine, glycine, and glutamate and increases in GPC. Principal component analysis revealed two patterns of metabolite changes, one common to both types of cell stress and another specific for necrosis secondary to cell starvation.

Conclusions: (1)H MRS reveals alterations in multiple metabolites during cell cycle arrest and cell death which may provide early biomarker profiles of treatment efficacy in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2010.07.002DOI Listing

Publication Analysis

Top Keywords

cell cycle
16
cell death
16
cell
12
magnetic resonance
8
resonance spectroscopy
8
cycle arrest
8
arrest cell
8
glioma cells
8
cell stress
8
flow cytometry
8

Similar Publications

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Menstrual effluent cell profiles have potential as noninvasive biomarkers of female reproductive and gynecological health and disease. We used DNA methylation-based cell type deconvolution (methylation cytometry) to identify cell type profiles in self-collected menstrual effluent. During the second day of their menstrual cycle, healthy participants collected menstrual effluent using a vaginal swab, menstrual cup, and pad.

View Article and Find Full Text PDF

An unprecedented global outbreak caused by the monkeypox virus (MPXV) prompted the World Health Organization to declare a public health emergency of international concern on July 23, 2022. Therapeutics and vaccines for MPXV are not widely available, necessitating further studies, particularly in drug repurposing area. To this end, the standardization of in vitro infection systems is essential.

View Article and Find Full Text PDF

Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation.

Pigment Cell Melanoma Res

January 2025

Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.

Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!