Human embryonic stem cell (hESC) derived cardiomyocytes are in the present study being used for testing drug-induced cardiotoxicity in a biosensor set-up. The design of an in vitro testing alternative provides a novel opportunity to surpass previous methods based on rodent cells or cell lines due to its significantly higher toxicological relevance. In this report we demonstrate how hESC-derived cardiomyocytes release detectable levels of two clinically decisive cardiac biomarkers, cardiac troponin T and fatty acid binding protein 3, when the cardiac cells are exposed to the well-known cardioactive drug compound, doxorubicin. The release is monitored by the immuno-biosensor technique surface plasmon resonance, particularly appropriate due to its capacity for parallel and high-throughput analysis in complex media.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2010.06.023DOI Listing

Publication Analysis

Top Keywords

cardiac biomarkers
8
human embryonic
8
embryonic stem
8
assaying cardiac
4
biomarkers toxicity
4
toxicity testing
4
testing biosensing
4
biosensing cardiomyocytes
4
cardiomyocytes derived
4
derived human
4

Similar Publications

Background: Obesity is a risk factor for heart failure (HF) development but is associated with a lower incidence of mortality in HF patients. This obesity paradox may be confounded by unrecognized comorbidities, including cachexia.

Methods: A retrospective assessment was conducted using data from a prospectively recruiting multicenter registry, which included consecutive acute heart failure patients.

View Article and Find Full Text PDF

Background: Protein abundance levels, sensitive to both physiological changes and external interventions, are useful for assessing the Alzheimer's disease (AD) risk and treatment efficacy. However, identifying proteomic prognostic markers for AD is challenging by their high dimensionality and inherent correlations.

Methods: Our study analyzed 1128 plasma proteins, measured by the SOMAscan platform, from 858 participants 55 years and older (mean age 63 years, 52.

View Article and Find Full Text PDF

Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.

View Article and Find Full Text PDF

Background: Nonocclusive mesenteric ischemia (NOMI), a subtype of acute mesenteric ischemia, is primarily caused by mesenteric arterial vasoconstriction and decreased vascular resistance, leading to impaired intestinal perfusion.Commonly observed after cardiac surgery, NOMI affects older patients with cardiovascular or systemic diseases, accounting for 20-30% of acute mesenteric ischemia cases with a mortality rate of ∼50%. This review explores NOMI's pathophysiology, clinical implications in aortic dissection, and the unmet needs in diagnosis and management, emphasizing its prognostic significance.

View Article and Find Full Text PDF

Gentisic acid protects Sprague-Dawley rats from myocardial infarction through reversing electrocardiographical, biochemical and histopathological abnormalities.

Biochem Biophys Res Commun

January 2025

Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, KPK, Pakistan. Electronic address:

Gentisic acid (GA), a cytochrome P450 metabolite of the antiplatelet drug aspirin, exhibits smooth muscle relaxant, antiatherogenic, and antioxidant activities. It also has a protective role in hypertrophic heart failure, suggesting its role in the management of myocardial infarction (MI). This study aimed to explore the protective activity of GA in isoproterenol (ISO)-induced MI in Sprague-Dawley (SD) rats in-vivo, followed by mechanistic investigation ex-vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!