The acute administration of MDMA has been shown to promote glycogenolysis and increase the extracellular concentration of glucose in the striatum. In the present study the role of serotonergic and/or noradrenergic mechanisms in the MDMA-induced increase in extracellular glucose and glycogenolysis was assessed. The relationship of these responses to the hyperthermia produced by MDMA also was examined. The administration of MDMA (10mg/kg, i.p.) resulted in a significant and sustained increase of 65-100% in the extracellular concentration of glucose in the striatum, as well as in the prefrontal cortex and hippocampus, and a 35% decrease in brain glycogen content. Peripheral blood glucose was modestly increased by 32% after MDMA treatment. Treatment of rats with fluoxetine (10mg/kg, i.p.) significantly attenuated the MDMA-induced increase in extracellular glucose in the striatum but had no effect on MDMA-induced glycogenolysis or hyperthermia. Treatment with prazosin (1mg/kg, i.p.) did not alter the glucose or glycogen responses to MDMA but completely suppressed MDMA-induced hyperthermia. Finally, propranolol (3mg/kg, i.p.) significantly attenuated the MDMA-induced increase in extracellular glucose and glycogenolysis but did not alter MDMA-induced hyperthermia. The present results suggest that MDMA increases extracellular glucose in multiple brain regions, and that this response involves both serotonergic and noradrenergic mechanisms. Furthermore, beta-adrenergic and alpha-adrenergic receptors appear to contribute to MDMA-induced glycogenolysis and hyperthermia, respectively. Finally, hyperthermia, glycogenolysis and elevated extracellular glucose appear to be independent, unrelated responses to acute MDMA administration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944403 | PMC |
http://dx.doi.org/10.1016/j.ejphar.2010.07.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!