Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurotrophic and neuroprotective peptide that has been shown to exert protective effects against different neuronal injuries, such as traumatic brain and spinal cord injury, models of neurodegenerative diseases, and cerebral ischemia. PACAP and its receptors are present in the retina. In this study, we summarize the current knowledge on retinal PACAP with focus on the retinoprotective effects. Results of histological, immunohistochemical, and molecular biological analysis are reviewed. In vitro, PACAP shows protection against glutamate, thapsigargin, anisomycin, and anoxia. In vivo, the protective effects of intravitreal PACAP treatment have been shown in the following models of retinal degeneration in rats: excitotoxic injury induced by glutamate and kainate, ischemic injury, degeneration caused by UV-A light, optic nerve transection, and streptozotocin-induced diabetic retinopathy. Studying the molecular mechanism has revealed that PACAP acts by activating antiapoptotic and inhibiting proapoptotic signaling pathways in the retina in vivo. These studies strongly suggest that PACAP is an excellent candidate retinoprotective agent that could be a potential therapeutic substance in various retinal diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2010.05512.xDOI Listing

Publication Analysis

Top Keywords

pituitary adenylate
8
adenylate cyclase
8
cyclase activating
8
activating polypeptide
8
focus retinoprotective
8
retinoprotective effects
8
protective effects
8
pacap
7
polypeptide retina
4
retina focus
4

Similar Publications

The approaches to correct thyroid deficiency include replacement therapy with thyroid hormones (THs), but such therapy causes a number of side effects. A possible alternative is thyroid-stimulating hormone (TSH) receptor activators, including allosteric agonists. The aim of this work was to study the effect of ethyl-2-(4-(4-(5-amino-6-(-butylcarbamoyl)-2-(methylthio)thieno[2,3-d]pyrimidin-4-yl)phenyl)--1,2,3-triazol-1-yl) acetate (TPY3m), a TSH receptor allosteric agonist developed by us, on basal and thyroliberin (TRH)-stimulated TH levels and the hypothalamic-pituitary-thyroid (HPT) axis in male rats with high-fat diet/low-dose streptozotocin-induced type 2 diabetes mellitus (T2DM).

View Article and Find Full Text PDF

Neural Plasticity in Migraine Chronification.

Eur J Neurosci

January 2025

Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plock, Poland.

Chronic migraine (CM) is the ultimate and most burdensome form of the transformation from episodic migraine (EM), called chronification. The mechanism behind migraine chronification is poorly known and difficult to explore as CM has the same spectrum of pathogenesis as EM and the EM-CM transition is bidirectional. Central sensitization (CS) is a key phenomenon in migraine: its mechanisms include disturbed neural plasticity, which is the ability of the nervous system to adapt to endo- and exogenous changes.

View Article and Find Full Text PDF

Background And Purpose: Pituitary adenylate cyclase activating polypeptide (PACAP) is a human migraine trigger that is being targeted for migraine. The δ-opioid receptor (δ-receptor) is a novel target for the treatment of migraine, but its mechanism remains unclear. The goals of this study were to develop a mouse PACAP-headache model using clinically significant doses of PACAP; determine the effects of δ-receptor activation in this model; and investigate the co-expression of δ-receptors, PACAP and PACAP-PAC1 receptor.

View Article and Find Full Text PDF

PAC1 Agonist Maxadilan Reduces Atherosclerotic Lesions in Hypercholesterolemic ApoE-Deficient Mice.

Int J Mol Sci

December 2024

Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037 Marburg, Germany.

A possible involvement of immune- and vasoregulatory PACAP signaling at the PAC1 receptor in atherogenesis and plaque-associated vascular inflammation has been suggested. Therefore, we tested the PAC1 receptor agonist Maxadilan and the PAC1 selective antagonist M65 on plaque development and lumen stenosis in the ApoE atherosclerosis model for possible effects on atherogenesis. Adult male ApoE mice were fed a cholesterol-enriched diet (CED) or standard chow (SC) treated with Maxadilan, M65 or Sham.

View Article and Find Full Text PDF

Purpose: This study aims to elucidate the role of pituitary adenylate cyclase-activating polypeptide (PACAP) in Hunner-type Interstitial Cystitis (HIC) and evaluate its potential as a therapeutic target.

Methods: Bladder tissue samples were obtained from HIC patients and normal bladder tissue from bladder cancer patients. PACAP expression was assessed through immunohistochemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!