Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201002351 | DOI Listing |
Adv Mater
December 2024
Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
Ordered intermetallic nanocatalysts supported on high-surface-area skeletons are of great importance in catalysis and have disclosed notable catalytic activity and stability that are remarkably better than their random alloy counterparts. Ultrafine intermetallic nanocatalysts are synthetically challenging, especially for universal and scaled-up synthesis, because of inevitable sintering and phase separation under high temperatures that promote atomic alloying and ordering. Herein, a universal solid-phase and scaled-up method is reported for synthesizing ultrafine intermetallic nanocatalysts with uniform size distributions and wide compositional spaces confined in ordered mesoporous carbon (OMC) supports, where the strong physical confinement and chemical interaction between metals and sulfur/mesoporous templates remarkably suppress the high-temperature sintering and phase separation even up to 1000 °C.
View Article and Find Full Text PDFPharm Nanotechnol
December 2024
BIOMCI, Faculty of Medicine and Pharmacy of Agadir, University Ibn Zohr, Agadir, Morocco.
Nanotechnology is rapidly transforming various fields, including medicine, environmental conservation, agriculture, and pharmaceuticals. The production of metallic nanoparticles is a key area within this field, known for its innovative applications. However, traditional chemical and physical methods used for nanoparticle synthesis often involve toxic chemicals and are expensive, making them unsuitable for large-scale production.
View Article and Find Full Text PDFFood Chem
December 2024
Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China. Electronic address:
A press-actuated slidable microfluidic colorimetric biosensor was designed for rapid, sensitive and multi-channel detection of Salmonella. The nickel mesh sheet (NMS) modified with capture antibodies was employed for capturing target bacteria, and metal organic frameworks decorated with palladium (Pd) and platinum (Pt) nanoparticles (MIL-88@Pd/Pt NPs) modified with detection antibodies were used for amplifying colorimetric signals. The capture efficiency of the immune NMS reached 83 %, and the detection limit of this colorimetric biosensor was 35 CFU/mL in 20 min.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2024
Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. Electronic address:
Metal hydrides are sensitive to HO and O, which reduces the atom efficiency of the hydride donors. Silver (Ag) is an inexpensive coinage metal; however, its lower activity compared to gold, platinum, and palladium limits its application in catalytic hydrogenation. Here, electron-deficient metallic single-atom Ag (AgSA) was loaded onto γ-AlO using a benzoquinone- and KNO- assisted photolysis approach.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China. Electronic address:
Background: Breast cancer CTCs have recently been recognized as an emerging biomarker for liquid biopsy of breast cancer. In this work, based on two-dimensional (2D) noble metal PtCo@rGO nanozymes and Au@CNTs bioconjugates, a novel electrochemiluminescence (ECL) cytosensor was developed in order to detect breast cancer CTCs (MCF-7) ultrasensitively.
Results: The PtCo@rGO nanozymes possessed large specific surface area and high efficiency peroxidase-like activity, which can be used as nanocarriers to anchor and catalyze luminol ECL emission efficiently.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!