Make them blink: probes for super-resolution microscopy.

Chemphyschem

Center for Nano and Molecular Science and Technology and Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA.

Published: August 2010

In recent years, a number of approaches have emerged that enable far-field fluorescence imaging beyond the diffraction limit of light, namely super-resolution microscopy. These techniques are beginning to profoundly alter our abilities to look at biological structures and dynamics and are bound to spread into conventional biological laboratories. Nowadays these approaches can be divided into two categories, one based on targeted switching and readout, and the other based on stochastic switching and readout of the fluorescence information. The main prerequisite for a successful implementation of both categories is the ability to prepare the fluorescent emitters in two distinct states, a bright and a dark state. Herein, we provide an overview of recent developments in super-resolution microscopy techniques and outline the special requirements for the fluorescent probes used. In combination with the advances in understanding the photophysics and photochemistry of single fluorophores, we demonstrate how essentially any single-molecule compatible fluorophore can be used for super-resolution microscopy. We present examples for super-resolution microscopy with standard organic fluorophores, discuss factors that influence resolution and present approaches for calibration samples for super-resolution microscopes including AFM-based single-molecule assembly and DNA origami.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201000189DOI Listing

Publication Analysis

Top Keywords

super-resolution microscopy
20
microscopy techniques
8
switching readout
8
super-resolution
6
microscopy
5
blink probes
4
probes super-resolution
4
microscopy years
4
years number
4
number approaches
4

Similar Publications

Super-Resolved Mapping of Electrochemical Reactivity in Single 3D Catalysts.

Nano Lett

January 2025

Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China.

Crystals with three-dimensional (3D) stereoscopic structures, characterized by diverse shapes, crystallographic planes, and morphologies, represent a significant advancement in catalysis. Differentiating and quantifying the catalytic activity of specific surface facets and sites at the single-particle level is essential for understanding and predicting catalytic performance. This study employs super-resolution radial fluctuations electrogenerated chemiluminescence microscopy (SRRF-ECLM) to achieve high-resolution mapping of electrocatalytic activity on individual 3D CuO crystals, including cubic, octahedral, and truncated octahedral structures.

View Article and Find Full Text PDF

Bacterial strains that are genetically engineered to constitutively produce fluorescent proteins have aided our study of bacterial physiology, biofilm formation, and interspecies interactions. Here, we report on the construction and utilization of new strains that produce the blue fluorescent protein mTagBFP2, the green fluorescent protein sfGFP, and the red fluorescent protein mScarlet-I3 in species , and . Gene fragments, developed to contain the constitutive promoter P , the fluorescent gene of interest as well as , providing resistance to the antibiotic spectinomycin, were inserted into selected open reading frames on the chromosome that were both transcriptionally silent and whose loss caused no measurable changes in fitness.

View Article and Find Full Text PDF

Here, we apply SuperResNET network analysis of dSTORM single-molecule localization microscopy (SMLM) to determine how the clathrin endocytosis inhibitors pitstop 2, dynasore and Latrunculin A alter the morphology of clathrin-coated pits. SuperResNET analysis of HeLa and Cos7 cells identifies: small oligomers (Class I); pits and vesicles (Class II); and larger clusters corresponding to fused pits or clathrin plaques (Class III). Pitstop 2 and dynasore induce distinct homogeneous populations of Class II structures in HeLa cells suggesting that they arrest endocytosis at different stages.

View Article and Find Full Text PDF

Super-Resolution Mitochondrial Fluorescent Probe for Accurate Monitoring of Drug-Induced Liver Injury.

Anal Chem

January 2025

Shandong Provincial Key Laboratory of Tumor Imaging Equipment Development and Integrated Diagnosis and Treatment Technology, Linyi University, Linyi 276000, China.

Drug-induced liver injury (DILI) has emerged as an urgent clinical challenge. It is characterized by mitochondrial dysfunction in liver cells, which leads to abnormal changes in HO levels within the mitochondria. Super-resolution imaging allows for the observation of the fine structure of mitochondria at the nanometer scale, potentially enabling the detection of mitochondrial HO levels during DILI at the subcellular organelle level.

View Article and Find Full Text PDF

Super-resolution microscopy has revolutionized biological imaging, enabling the visualization of structures at the nanometer length scale. Its application in live cells, however, has remained challenging. To address this, we adapted LIVE-PAINT, an approach we established in yeast, for application in live mammalian cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!