The goal of this study was to determine the role of an influx copper transporter, CTR1, in the ototoxicity induced by cisplatin, a potent anticancer platinum analog used in the treatment of a variety of solid tumors. As determined through reverse transcriptase-PCR (RT-PCR), quantitative RT-PCR, Western blot, and immunohistochemistry, mouse CTR1 (Ctr1) was found to be abundantly expressed and highly localized at the primary sites of cisplatin toxicity in the inner ear, mainly outer hair cells (OHCs), inner hair cells, stria vascularis, spiral ganglia, and surrounding nerves in the mouse cochlea. A CTR1 substrate, copper sulfate, decreased the uptake and cytotoxicity of cisplatin in HEI-OC1, a cell line that expresses many molecular markers reminiscent of OHCs. Small interfering RNA-mediated knockdown of Ctr1 in this cell line caused a corresponding decrease in cisplatin uptake. In mice, intratympanic administration of copper sulfate 30 min before intraperitoneal administration of cisplatin was found to prevent hearing loss at click stimulus and 8, 16, and 32 kHz frequencies. To date, the utility of cisplatin remains severely limited because of its ototoxic effects. The studies described in this report suggest that cisplatin-induced ototoxicity and cochlear uptake can be modulated by administration of a CTR1 inhibitor, copper sulfate. The possibility of local administration of CTR1 inhibitors during cisplatin therapy as a means of otoprotection is thereby raised.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949060 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1544-10.2010 | DOI Listing |
Biology (Basel)
December 2024
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia.
This paper presents the results of microbial corrosion tests on M0-grade copper under conditions simulating a geological repository for radioactive waste at the Yeniseisky site (Krasnoyarsk Krai, Russia). The work used a microbial community sampled from a depth of 450 m and stimulated with glucose, hydrogen and sulfate under anaerobic conditions. It was shown that the maximum corrosion rate, reaching 9.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Poultry Research Centre, Trouw Nutrition R&D, El Viso de San Juan, 45950 Toledo, Spain.
(1) Background: this study compared hydroxychloride and traditional oxide/sulfate sources of zinc (Zn), manganese (Mn), and copper (Cu) in ISA Brown pullet diets, focusing on growth, tibia strength, egg production, and eggshell quality. (2) Methods: in total, 120 pullets were divided into two groups, each with six replicates of 10 birds, receiving diets with hydroxychloride or oxide/sulfate sources of Mn, Zn, and Cu (65, 50, and 5 mg/kg, respectively) during rearing. At 16 weeks, 18 pullets per group transitioned to individual cages and were fed a standard diet with Mn-oxide, Zn-oxide, and Cu-sulfate until 50 weeks.
View Article and Find Full Text PDFTalanta
December 2024
Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, China. Electronic address:
Accurate analysis of urinary creatinine levels is of great clinical significance. Non-enzymatic creatinine sensing systems (NECSs) have gained growing development because of higher stability and lower cost compared to enzymatic sensing systems. At present, there is a demand for simple approaches to develop NECSs with high sensitivity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.
Celosia argentea is a plant known for producing bioactive compounds, including betalains, which possess various biological and pharmaceutical properties. This study aimed to investigate the effect of biotic and abiotic elicitors on betalains production and their antioxidant activity in cell suspension cultures of C. argentea.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
December 2024
Department of Emergency Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!