Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Breast cancer shows a strong predilection to metastasize to bone. Cell surface glycoprotein extracellular matrix metalloproteinase inducer (EMMPRIN)/CD147 induces metalloproteinases (MMP) and vascular endothelial growth factor (VEGF), which may support osteoclastic activity and increased incidence of breast cancer bone metastases. In support of this hypothesis, we observed that MDA-MB-231 human breast tumor cells engineered to overexpress EMMPRIN strongly induced osteolytic lesions in immunodeficient mice, which was blunted by in vivo treatment with an EMMPRIN blocking antibody. Similarly, these cells exhibited increased expression of MMP-9 and VEGF relative to control cells. Treatment of MDA-MB-231 cells with the osteoclastogenic cytokine receptor activator of NF-kappaB ligand (RANKL) upregulated EMMPRIN expression with a parallel increase of MMP-9 and VEGF. Conditioned medium from osteoblasts similarly increased EMMPRIN, MMP-9, and VEGF expression in cells. Osteoblast treatment with the RANKL decoy receptor osteoprotegerin abolished this effect. EMMPRIN overexpression stimulated MDA-MB-231 cell invasion but not proliferation. Conversely, small interfering RNA-mediated knockdown of EMMPRIN downregulated MMP-9 and VEGF basal expression and RANKL-stimulated expression, and reduced cell invasion. Our results argue that EMMPRIN drives breast cancer-induced osteolytic lesions and that activation of the RANKL pathway increases EMMPRIN in osteotropic tumor cells, in turn enhancing tumor-induced bone resorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-09-2758 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!