A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-content micronucleus assay in genotoxicity profiling: initial-stage development and some applications in the investigative/lead-finding studies in drug discovery. | LitMetric

This article describes the first step toward full (that includes conditions for both absence and presence of metabolic activation) validation and drug discovery application of a 96-well, automated, high-content micronucleus (HCMN) assay. The current validation tests were performed using Chinese hamster ovary cells, in the absence of metabolic activation, against three distinct sets of drug-like compounds that represent all stages of a drug discovery pipeline. A compound categorization scheme was created based on quantitative relationships between micronucleus (MN) signals, cytotoxicity, and compound solubility. Results from initial validation compounds (n = 38) set the stage for differentiating overall positive and negative MN inducers. To delve deeper into the compound categorization process, a more extensive validation set, consisting of a larger set (n = 370) of "drug-like but less optimized" early-stage compounds, was used for further refinement of positive and negative compound categories. The predictivity and applicability of the assay for clinical stage compounds was ascertained using (n = 168) clinically developed marketed drugs or well-studied compounds. Upon full validation, a detailed analysis of results established five compound categories--NEG (negative), NEG/xx μM (negative up to the solubility limit of xx μM), WPOS (weak positive), POS (positive), and INCON (inconclusive). Furthermore, examples of lead-finding applications and ongoing investigative HCMN activities are described. A proposal is offered on how the HCMN assay can be positioned in parallel to the overall stage gates (e.g., scaffold selection, lead optimization, late-stage preclinical development) of drug discovery programs. Because of its greater throughput, 1-week turnaround time, and a substantially reduced (1-2 mg) requirement for compound consumption, the HCMN assay is appropriate for developing structure-genotoxicity relationships and for mechanistic genotoxicity studies. The assay does not replace the Organization for Economic Cooperation and Development-compliant, non-good laboratory practice in vitro MN test (e.g., slide-based MN test in TK6 lymphoblastoid cells) that is used for full characterization of lead candidates.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfq181DOI Listing

Publication Analysis

Top Keywords

drug discovery
16
hcmn assay
12
high-content micronucleus
8
metabolic activation
8
compound categorization
8
positive negative
8
assay
6
compound
6
validation
5
compounds
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!