A method to measure the distribution of latencies of motor evoked potentials in man.

Clin Neurophysiol

Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Switzerland.

Published: January 2011

Objective: To measure the intra-individual distribution of the latencies of motor evoked potentials (MepL) using transcranial magnetic stimulation.

Methods: We used the triple stimulation technique (TST) to quantify the proportion of excited spinal motor neurons supplying the abductor digiti minimi muscle in response to a maximal magnetic brain stimulus (Magistris et al., 1998). By systematically manipulating the TST delay, we could quantify the contribution of slow-conducting motor tract portions to the TST amplitude.

Results: Our method allowed the establishment of a MepL distribution for each of the 29 examined healthy subjects. MepLs of 50% of the motor tract contributing to the motor evoked potential laid between the intra-individually minimal MepL (MepL(min)) and MepL(min)+4.9 ms (range 1.6-9.2). The individual MepL distributions showed two peaks in most subjects. The first peak appeared at a MepL that was 3.0 ms longer on average (range 0.7-6.0) than MepL(min); the second peak appeared at MepL(min)+8.1 ms on average (range 3.7-13.0).

Conclusions: Slow-conducting parts of the motor pathway contribute notably to the motor evoked potential. Our data suggest a bimodal distribution of central conduction times, which might possibly relate to different fibre types within the pyramidal tract.

Significance: We present a non-invasive method to assess slow-conducting parts of the human central motor tract.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinph.2010.05.034DOI Listing

Publication Analysis

Top Keywords

motor evoked
16
motor tract
12
motor
9
distribution latencies
8
latencies motor
8
evoked potentials
8
evoked potential
8
peak appeared
8
average range
8
slow-conducting parts
8

Similar Publications

Purpose: Spinal cord stimulation (SCS) is pivotal in treating chronic intractable pain. To elucidate the mechanism of action among conventional and current novel types of SCSs, a stable and reliable electrophysiology model in the consensus animals to mimic human SCS treatment is essential. We have recently developed a new in vivo implantable pulsed-ultrahigh-frequency (pUHF) SCS platform for conducting behavioral and electrophysiological studies in rats.

View Article and Find Full Text PDF

Localization of function within the brain and central nervous system is an essential aspect of clinical neuroscience. Classical descriptions of functional neuroanatomy provide a foundation for understanding the functional significance of identifiable anatomic structures. However, individuals exhibit substantial variation, particularly in the presence of disorders that alter tissue structure or impact function.

View Article and Find Full Text PDF

In recent years, the recreational use of xylazine has increased dramatically in the USA. Although xylazine has been used as an anesthetic in veterinary medicine for decades, little is known about its behavioral effects. We took advantage of the planarian's innate negative phototaxis, the reliable movement from the light side to the dark side of a Petri dish, to explore the organism's suitability as an animal model for investigating the preclinical pharmacology of xylazine.

View Article and Find Full Text PDF

Objective: To characterize structural integrity of the lumbosacral enlargement and conus medullaris within one month after spinal cord injury (SCI).

Methods: Lumbosacral cord MRI data were acquired in patients with sudden onset (<7 days) SCI at the cervical or thoracic level approximately one month after injury and in healthy controls. Tissue integrity and loss were evaluated through diffusion tensor (DTI) and T2*-weighted imaging (cross-sectional area [CSA] measurements).

View Article and Find Full Text PDF

Unlabelled: Electric fields used in clinical trials with transcranial direct current stimulation (tDCS) are small, with magnitudes that have yet to demonstrate measurable effects in preclinical animal models. We hypothesized that weak stimulation will nevertheless produce sizable effects, provided that it is applied concurrently with behavioral training, and repeated over multiple sessions. We tested this here in a rodent model of dexterous motor-skill learning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!