Preparation and characterization of a nanoscale ultrasound contrast agent.

Clin Imaging

Department of Ultrasound, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.

Published: November 2010

Objective: The purpose of the present study is to prepare a nanoscale ultrasound contrast agent and to investigate its characterization and ultrasonic imaging in vivo.

Methods: Nanoscale ultrasound contrast agent was prepared by machine vibration and low speed centrifugation, and the appearance, distribution, diameter, and zeta potential of the nanoscale ultrasound contrast agent were measured. Contrast-enhanced ultrasonography was performed on normal rabbit liver to observe the duration and intensity of enhancement.

Results: The nanoscale ultrasound contrast agent had a good shape and uniform distribution by light microscope and transmission electron microscope, with average diameters of 623.4 nm and average zeta potential of 1.3 mV. The contrast imaging study in vivo showed that the nanoscale ultrasound contrast agent could significantly enhance the duration and echo intensity of the vessels and parenchyma in rabbit livers, and there were no obvious difference with micro-scale microbubbles.

Conclusions: The nanoscale ultrasound contrast agent is stable and effective for the enhancement of ultrasound imaging. This study provides an important platform for miniaturizing and improving the targeting performance of ultrasound contrast agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinimag.2010.02.009DOI Listing

Publication Analysis

Top Keywords

ultrasound contrast
32
nanoscale ultrasound
28
contrast agent
28
ultrasound
9
contrast
9
zeta potential
8
imaging study
8
nanoscale
7
agent
7
preparation characterization
4

Similar Publications

Purpose: Pulmonary perfusion imaging is a key lung health indicator with clinical utility as a diagnostic and treatment planning tool. However, current nuclear medicine modalities face challenges like low spatial resolution and long acquisition times which limit clinical utility to non-emergency settings and often placing extra financial burden on the patient. This study introduces a novel deep learning approach to predict perfusion imaging from non-contrast inhale and exhale computed tomography scans (IE-CT).

View Article and Find Full Text PDF

Purpose: The objective of this study was to explore the feasibility of using the TianJi Robot system for navigated needle positioning in the PCNL procedure in vitro.

Methods: A pig kidney with a segment of ureter was selected as the in vitro organ model. Iodine contrast agent was infused into the renal pelvis to dilate the renal pelvis and calyx to establish the in vitro hydronephrosis model.

View Article and Find Full Text PDF

This study aimed to develop and evaluate an efficient method to automatically segment T1- and T2-weighted brain magnetic resonance imaging (MRI) images. We specifically compared the segmentation performance of individual convolutional neural network (CNN) models against an ensemble approach to advance the accuracy of MRI-guided radiotherapy (RT) planning..

View Article and Find Full Text PDF

Purpose: The single reference variable flip angle sequence with a multi-echo stack of stars acquisition (SR-VFA-SoS) simultaneously measures temperature change using proton resonance frequency (PRF) shift and T-based thermometry methods. This work evaluates SR-VFA-SoS thermometry in MR-guided focused ultrasound in an in vivo rabbit model.

Methods: Simultaneous PRF shift thermometry and T-based thermometry were obtained in a New Zealand white rabbit model (n = 7) during MR-guided focused ultrasound surgery using the SR-VFA-SoS sequence at 3 T.

View Article and Find Full Text PDF

Hemorrhagic transformation (HT) is a serious complication that worsens outcomes and increases mortality in patients with ischemic stroke (IS). HT can occur both spontaneously and after reperfusion therapy. Severe ischemic injury in IS is not sufficient in itself to cause HT; one of the key elements in its development is reperfusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!