Little is understood about the impact of environmental conditions on the virulence plasticity of Listeria monocytogenes strains grown in food. In this report, we monitored changes in the virulence properties of one high virulent (CCUG 3998) and one low virulent (442) L. monocytogenes strains grown on raw salmon (Salmo salar L.). The effect of temperature exposures (0 degrees C, 4 degrees C and 20 degrees C) on the expression levels of virulence genes (hlyA, actA, inlA and prfA), invasion into Caco-2 cells and in vivo mouse infection was analysed. Our results showed that L. monocytogenes virulence genes are differentially expressed when salmon is stored at different temperatures. Of the four virulence genes, the transcript levels for inlA were strongly affected, which correlated with the strain's virulence capacity as assessed by Caco-2 cells. In contrast to CCUG 3998, the virulence of strain 442 was altered with tested conditions. This strain maintains its low virulence status as far as salmon is stored at lower temperatures, but increases its virulence at higher temperatures. These results lead to the indication that exposure to abuse temperature conditions might influence the virulence potential of low pathogenic L. monocytogenes strains in salmon.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2010.04.012DOI Listing

Publication Analysis

Top Keywords

monocytogenes strains
16
strains grown
12
virulence genes
12
virulence
11
virulence potential
8
listeria monocytogenes
8
ccug 3998
8
degrees degrees
8
caco-2 cells
8
salmon stored
8

Similar Publications

A variety of phytochemicals from different plants are collected by bees into bee pollen granules. This research focused on evaluating the effects of lactic acid fermentation and enzymatic hydrolysis on the antibacterial activity of bee pollen and its interaction with antibiotics. There is limited knowledge regarding the interactions between treated bee pollen extracts and antibiotics, and this study contributes to the field by providing new insights into the antibacterial activity of pollen subjected to eight distinct treatment methods.

View Article and Find Full Text PDF

is one of the most important foodborne pathogens that can cause invasive listeriosis. In this study, the virulence levels of 26 strains of isolated from food and clinical samples in Shanghai, China, between 2020 and 2022 were analyzed. There were significant differences among isolates in terms of their mortality rate in , cytotoxicity to JEG-3 cells, hemolytic activity, and expression of important virulence genes.

View Article and Find Full Text PDF

Antimicrobial-producing strains and their bacteriocins hold great promise for the control of bacterial diseases, being an attractive alternative to antibiotics. Thus, the aim of this study was to evaluate the inhibitory activity of 15 bacteriocin-producing staphylococci and mammaliicocci (BP-S/M) strains and their pre-purified extracts with butanol (BT) against a collection of 27 harmful or zoonotic strains (including Gram-positive/-negative bacteria and molds) with relevance in the public health and agro-food fields. These indicators (excluding Gram-negative strains) were grouped into seven categories based on their potential application areas: dairy livestock mastitis, avian pathogen zoonoses, swine zoonoses, food safety, aquaculture, wine making, and mushroom cultivation.

View Article and Find Full Text PDF

Ready-to-eat (RTE) foods are the most common sources of transmission. Whole-genome sequencing (WGS) enhances the investigation of foodborne outbreaks by enabling the tracking of pathogen sources and the prediction of genetic traits related to virulence, stress, and antimicrobial resistance, which benefit food safety management. The aim of this study was to evaluate the efficacy of WGS in the typing of 16 strains isolated from refrigerated foods in Chile, highlighting its advantages in pathogen identification and the improvement of epidemiological surveillance and food safety.

View Article and Find Full Text PDF

The present research evaluated the effect of selected strains with anti- properties on the characteristics of traditional soft-ripened cheeses produced in two different seasons. Physicochemical, microbiological, texture, volatile compound, and sensory evaluations were performed on the cheeses after 60 days of ripening. The inoculation with protective cultures of selected LAB did not negatively affect the physicochemical parameters of the cheeses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!