Objective: This in vitro study compared the cytotoxicity and osteogenic potential of an experimental calcium silicate-based sealer with an epoxy resin-based sealer (AH Plus; Dentsply Caulk, Milford, DE) and a zinc oxide-eugenol-based sealer (Pulp Canal Sealer; SybronEndo, Orange, CA).

Methods: Disks prepared from the respective sealer and from Teflon (negative control) were placed in direct contact with a MC3T3-E1 osteogenic cell line at 6 weekly intervals after immersion in a culture medium. Succinic dehydrogenase activities were evaluated using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Extracts from these sealers after the 6-week immersion period were investigated also by MTT assay. Aged sealers were then switched to an osteogenic medium for examination of the alkaline phosphatase activity and mineralization of extracellular matrices produced by the differentiated cells.

Results: All sealers exhibited severe toxicity after 24 hours, after which toxicity decreased gradually over the experimental period except for Pulp Canal Sealer, which remained severely toxic. Toxicity of the extracts derived from the sealers was concentration dependent, with those derived from the experimental sealer being the least cytotoxic at a 1:10 dilution. Minimal alkaline phosphatase activity and no bone formation were seen with Pulp Canal Sealer. The production of alkaline phosphatase was less intense for the experimental sealer at 7 days. However, both AH Plus and the experimental sealer did not inhibit mineralization of the extracellular matrix after 28 days.

Conclusion: The experimental calcium silicate-based sealer may be regarded as minimally tissue irritating and does not interfere with bone regeneration even when it is inadvertently extruded through the apical constriction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joen.2010.03.034DOI Listing

Publication Analysis

Top Keywords

canal sealer
16
experimental calcium
12
calcium silicate-based
12
sealer
12
pulp canal
12
alkaline phosphatase
12
experimental sealer
12
osteogenic potential
8
potential experimental
8
silicate-based sealer
8

Similar Publications

This study assessed the biocompatibility and chemical properties of two bioceramic root canal sealers, EndoSequence BC Sealer (EBC) and Nishika Canal Sealer BG (NBG), using a sealer extrusion model. Eight-week-old male Wistar rats were used. The mesial root canals of the upper first molars were pulpectomized and overfilled with EBC, NBG, or, as reference, epoxy resin-based AH Plus (AHP).

View Article and Find Full Text PDF

This study evaluated the effect of resin cements and post-space irrigation solutions on the push-out bond strength of diabetic and non-diabetic dentin. A total of 160 human central teeth (80 diabetic, 80 non-diabetic) were prepared using X5 files and obturated with AH Plus sealer and X5 gutta-percha. Post spaces were prepared, and teeth were divided into eight groups based on resin cements (Variolink N, Panavia SA Universal) and irrigation protocols (saline, saline + 2% CHX).

View Article and Find Full Text PDF

Comparative in Vitro Study on the Antimicrobial Efficacy of Endodontic Sealers Against Common Oral Pathogens.

Dent J (Basel)

December 2024

Department of Odontology and Oral Pathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540139 Târgu Mureș, Romania.

: Microorganisms are the leading cause of infections in the root canal system, contributing to the failure of endodontic treatments. This in vitro study aimed to compare the antimicrobial effects of four different endodontic sealers: Endomethasone N (Septodont, Saint Maur-des-Fossés, France), Sealapex (Kerr Corporation, Orange, CA, USA), AH Plus Jet (Dentsply DeTrey GmbH, Konstanz, Germany), and MTA Fillapex (Angelus, Londrina, Brazil). : The sealers were tested against common oral pathogens, including Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Candida albicans, and Streptococcus mutans, using the agar diffusion method.

View Article and Find Full Text PDF

Root canal retreatment (Re-RCT) cases have shortcomings due to the ineffective removal of the root canal filling material, eventually leading to endodontic failure. This study aims to test the comparative efficacy of retreatment files in removing calcium silicate-based sealer and epoxy resin-based sealer. Thirty-two single-rooted teeth were decoronated at 15 mm and bio-mechanical preparation was performed.

View Article and Find Full Text PDF

Perforating Internal Root Resorption Sealed with Single-Cone Technique Using Bioceramic Sealer: A Case Report.

Am J Case Rep

January 2025

Department of Restorative Dentistry, College of Dentistry, Umm Al-Qura University, Mekkah, Saudi Arabia.

BACKGROUND Internal root resorption (IRR) is a rare dental condition characterized by the progressive resorption of dentin within the root canal, often resulting from infection, trauma, or orthodontic treatment. When IRR progresses to perforation, it creates a communication pathway with periodontal tissues, necessitating effective endodontic therapy and perforation repair. Bioceramic sealers, known for their biocompatibility and flowability, have emerged as a promising alternative to traditional materials for filling and sealing the root canal system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!