Background: The epidermal specific ablation of Trp53 gene leads to the spontaneous development of aggressive tumors in mice through a process that is accelerated by the simultaneous ablation of Rb gene. Since alterations of p53-dependent pathway are common hallmarks of aggressive, poor prognostic human cancers, these mouse models can recapitulate the molecular features of some of these human malignancies.
Results: To evaluate this possibility, gene expression microarray analysis was performed in mouse samples. The mouse tumors display increased expression of cell cycle and chromosomal instability associated genes. Remarkably, they are also enriched in human embryonic stem cell gene signatures, a characteristic feature of human aggressive tumors. Using cross-species comparison and meta-analytical approaches, we also observed that spontaneous mouse tumors display robust similarities with gene expression profiles of human tumors bearing mutated TP53, or displaying poor prognostic outcome, from multiple body tissues. We have obtained a 20-gene signature whose genes are overexpressed in mouse tumors and can identify human tumors with poor outcome from breast cancer, astrocytoma and multiple myeloma. This signature was consistently overexpressed in additional mouse tumors using microarray analysis. Two of the genes of this signature, AURKA and UBE2C, were validated in human breast and cervical cancer as potential biomarkers of malignancy.
Conclusions: Our analyses demonstrate that these mouse models are promising preclinical tools aimed to search for malignancy biomarkers and to test targeted therapies of prospective use in human aggressive tumors and/or with p53 mutation or inactivation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913987 | PMC |
http://dx.doi.org/10.1186/1476-4598-9-193 | DOI Listing |
STAR Protoc
January 2025
Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA. Electronic address:
Neutral lipids affect the immunosuppressive function of myeloid-derived suppressor cells (MDSCs). Here, we present a protocol for measuring neutral lipids in MDSCs using BODIPY from mouse mammary tumor derived from triple-negative breast cancer cells, 4T1, which is applicable to other mammary tumors of interest. We describe steps for 4T1 cell culture, single-cell isolation from tumors, staining of cells with antibodies and BODIPY, and flow cytometry.
View Article and Find Full Text PDFACS Nano
January 2025
Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
Glioblastoma multiforme (GBM), particularly the deep-seated tumor where surgical removal is not feasible, poses great challenges for clinical treatments due to complicated biological barriers and the risk of damaging healthy brain tissue. Here, we hierarchically engineer a self-adaptive nanoplatform (SAN) that overcomes delivery barriers by dynamically adjusting its structure, surface charge, particle size, and targeting moieties to precisely distinguish between tumor and parenchyma cells. We further devise a AN-uided ntuitive and recision ntervention (SGIPi) strategy which obviates the need for sophisticated facilities, skilled operations, and real-time magnetic resonance imaging (MRI) guidance required by current MRI-guided laser or ultrasound interventions.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Background: The primary objective of this study was to examine whether ARID1A mutations confer a fitness advantage to gastric cancer from an immunological perspective, along with elucidating the underlying mechanism. Additionally, we aimed to identify the clinical potential of combining epigenetic inhibitors with immune checkpoint inhibitors to improve the efficacy of immunotherapy for gastric cancer.
Methods: The correlation between ARID1A gene expression and gastric cancer patient survival was analyzed using the GEO dataset GSE62254.
Eur J Med Res
January 2025
Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
Objectives: SOX10 is crucially implicated in various cancer, yet the regulatory role in pancreatic cancer (PC) remains enigmatic. Underlying molecular mechanisms of SOX10 in PC were explored in our study.
Methods: Relationships between SOX10 and immune landscape were estimated using bioinformatic approaches.
Cancer Cell Int
January 2025
Department of Otolaryngology, Pudong Gongli Hospital, Shanghai, 200135, China.
Background: Specific molecular mechanisms by which AURKA promoted LSCC metastasis were still unknown.
Methods: Bioinformatic analysis was performed the relationship between TRIM28 and LSCC. Immunohistochemistry, Co-IP assay, Rt-PCR and Western Blot were used to examine the expression of related molecular.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!