While the antimicrobial effectiveness of wine is well documented, relative contributions of the wine components to its antimicrobial activity is controversial. To separate the role of wine phenolics, ethanol, and pH from other wine constituents, the antimicrobial effects of intact wine were compared to that of phenols-stripped wine, dealcoholized wine, ethanol, and low pH applied separately and in combination, against 2 common foodborne pathogens, Salmonella enterica serovar Enteritidis and Escherichia coli. All samples were biochemically characterized with respect to their total phenolics and resveratrol content, antioxidant capacity, ethanol content, and pH. Antioxidative activity of the samples corresponded to their total phenolics content. Except for respective controls, pH and ethanol content were similar in all samples. The order of antibacterial activity of the samples was: intact wine > phenols-stripped wine > dealcoholized wine > combination of ethanol and low pH > low pH > ethanol. Separate application of ethanol or low pH showed negligible antibacterial activity while their combination showed synergistic effect. Antibacterial activity of the samples could not be related to their total phenolics and resveratrol content, antioxidant capacity, ethanol content, or pH. Our study indicates that antimicrobial activity of complex solutions such as intact wine cannot be exclusively attributed to its phenolic or nonphenolic constituents, nor can the antimicrobial activity of wine be predicted on the basis of its particular components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1750-3841.2010.01622.x | DOI Listing |
Food Chem X
January 2025
University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića Bb, 34000 Kragujevac, Serbia.
The individual (poly)phenols of red wines cultivated in two different Western Balkan wine-growing regions were determined using the HPLC method, while the ABTS and DPPH tests were employed to investigate antioxidant activity. The reduction potential of antioxidants was determined by FRAP assay. Five distinct classes of phenolic compounds, including phenolic acids, flavan-3-ols, flavonols, stilbenes, and anthocyanins, were identified.
View Article and Find Full Text PDFPLoS One
January 2025
South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa.
Hyphopichia pseudoburtonii, is emerging as a potential biocontrol agent against various phytopathogens. These traits have been attributed to the production of various antifungal compounds in the presence of target pathogens. However, the broad molecular mechanisms involved in the antifungal activity are not yet understood.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, 510665, People's Republic of China.
A simple and rapid colorimetric detection strategy, based on hydrogen bond identification of 6-thioguanine (6-TG) functionalized Au nanoparticles (AuNPs), is proposed for highly selective and sensitive determination of kanamycin (KA). In this strategy, the hydrogen bond interaction between 6-TG and kanamycin induces AuNPs to agglomerate, with a consequent color change of AuNPs from wine red to purple or even blue. The kanamycin concentrations can be quantified by employing UV-vis spectrophotometer.
View Article and Find Full Text PDFF1000Res
January 2025
Operations Management, T A Pai Management Institute, Manipal Academy of Higher Education, Manipal, India, 576104, Manipal, Karnataka, 576104, India.
Background: As wine has become more than just a drink, exploring wine consumer studies provides a better understanding of various factors that shape the wine industry. Therefore, this paper aims to review and map the landscape of wine consumer literature using bibliometric analysis and systematic review. It identifies the key areas, clusters, antecedents, mediators, moderators, and outcomes to propose the framework for future research directions.
View Article and Find Full Text PDFPhysiol Plant
January 2025
School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia.
The relative performance of rhizobial strains could depend on their resource allocation, environmental conditions, and host genotype. Here, we used a high-throughput shoot phenotyping to investigate the effects of Mesorhizobium strain on the growth dynamics, nodulation and bacteroid traits with four chickpea (Cicer arietinum) varieties grown under different water regimes in an experiment including four nitrogen sources (two Mesorhizobium strains, and two uninoculated controls: nitrogen fertilised and unfertilised) under well-watered and drought conditions. We asked three questions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!