Introduction: Identifying geographic locations in urban areas from which air pollutants enter the atmosphere is one of the most important information needed to develop effective mitigation strategies for pollution control.
Materials And Methods: Stochastic analysis is a powerful tool that can be used for estimating concentration fluctuation in plume dispersion in a wake region around buildings. Only few studies have been devoted to evaluate applications of stochastic analysis to pollutant dispersion in an urban area. This study was designed to investigate the concentration fields in the wake region using obstacle model such as an isolated building model. We measured concentration fluctuations at centerline of various downwind distances from the source, and different heights with the frequency of 1 KHz. Concentration fields were analyzed stochastically, using the probability density functions (pdf). Stochastic analysis was performed on the concentration fluctuation and the pdf of mean concentration, fluctuation intensity, and crosswind mean-plume dispersion.
Results: The pdf of the concentration fluctuation data have shown a significant non-Gaussian behavior. The lognormal distribution appeared to be the best fit to the shape of concentration measured in the boundary layer. We observed that the plume dispersion pdf near the source was shorter than the plume dispersion far from the source.
Conclusion: Our findings suggest that the use of stochastic technique in complex building environment can be a powerful tool to help understand the distribution and location of air pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-010-0372-5 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
The construction of artificial reefs (ARs) is an effective way to restore habitats and increase and breed fishery resources in marine ranches. However, studies on the impacts of ARs on the structure, function, and assembly patterns of the bacterial community (BC), which is important in biogeochemical cycles, are lacking. The compositions, diversities, assembly patterns, predicted functions, and key environmental factors of the attached and free-living microbial communities in five-year ARs (O-ARs) and one-year ARs (N-ARs) in Fangchenggang, China, were analyzed via 16S rRNA gene sequencing.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China.
Accurately predicting the remaining useful life (RUL) of critical mechanical components is a central challenge in reliability engineering. Stochastic processes, which are capable of modeling uncertainties, are widely used in RUL prediction. However, conventional stochastic process models face two major limitations: (1) the reliance on strict assumptions during model formulation, restricting their applicability to a narrow range of degradation processes, and (2) the inability to account for potential variations in the degradation mechanism during modeling and prediction.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Strength of Materials, National University for Science and Technology POLITEHNICA Bucharest, Splaiul Independeţei 313, 060042 Bucharest, Romania.
Sandwich structures with triply periodic minimal surface (TPMS) cores have garnered research attention due to their potential to address challenges in lightweight solutions, high-strength designs, and energy absorption capabilities. This study focuses on performing finite element analyses (FEAs) on eight novel TPMS cores and one stochastic topology. It presents a method of analysis obtained through implicit modeling in simulations and examines whether the results obtained differ from a conventional method that uses a non-uniform rational B-spline (NURBS) approach.
View Article and Find Full Text PDFMicroorganisms
January 2025
State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China.
As transitional ecosystems between land and sea, estuaries are characterized by a unique environment that supports complex and diverse microbial communities. A comprehensive analysis of microbial diversity and ecological processes at different trophic levels is crucial for understanding the ecological functions of estuarine ecosystems. In this study, we systematically analyzed the diversity patterns, community assembly, and environmental adaptability of bacterial and protist communities using high-throughput sequencing techniques.
View Article and Find Full Text PDFMicroorganisms
January 2025
Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Spain.
The significant microbiota variability represents a key feature that makes the full comprehension of the functional interaction between microbiota and the host an ongoing challenge. To overcome this limitation, in this study, fish intestinal microbiota was analyzed through a meta-analysis, identifying the core microbiota and constructing stochastic Bayesian network (BN) models with SAMBA. We combined three experiments performed with gilthead sea bream juveniles of the same hatchery batch, reared at the same season/location, and fed with diets enriched on processed animal proteins (PAP) and other alternative ingredients (NOPAP-PP, NOPAP-SCP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!