We are interested in elucidating the molecular mechanisms underlying plant reactions to the toxic heavy metal cadmium (Cd). To this end, we devised a new screening strategy using agar plates with a gradient of Cd concentrations, termed Cd-gradient agar plates (CGAPs), to isolate Arabidopsis mutants that displayed altered reactions to the metal. Arabidopsis M(2) seeds, derived from ethyl methanesulfonate (EMS) treated seeds, were germinated on the CGAPs such that the primary root of each seedling elongated against increasing concentrations of Cd on the surface of the plate. Under these conditions, the lengths of the primary roots reliably demonstrated the degree of Cd tolerance of individual seedlings. The use of CGAPs also allowed close observation of the root reaction of each seedling to Cd without causing lethal damage. The screen identified three mutant lines, MRC-32, MRC-22 and MRC-26, which showed distinctly different characteristics. MRC-32 plants exhibited enhanced tolerance to Cd and contained Cd at higher concentrations than wild-type (WT) plants treated with the heavy metal. The whole root system of MRC-22 plants showed a Cd-phobic response. MRC-26 plants accumulated less Cd in their aboveground tissues than WT plants, suggesting that they were defective in transporting the heavy metal from roots to aboveground tissues. We also determined the likely chromosomal location of each mutation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-010-1217-7 | DOI Listing |
J Chem Ecol
January 2025
Department of Nematology, University of California Riverside, Riverside, CA, USA.
Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.
View Article and Find Full Text PDFLancet Reg Health West Pac
January 2025
Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Viet Nam.
Background: Beta-lactams remain the first-line treatment of infections despite the increasing global prevalence of penicillin-resistant/non-susceptible strains. We conducted a cross-sectional household survey in a rural community in northern Vietnam in 2018-2019 to provide prevalence estimates of penicillin non-susceptible (PNSP) carriage and to investigate behavioural and environmental factors associated with PNSP colonization. The data presented will inform the design of a large trial of population-based interventions targeting inappropriate antibiotic use.
View Article and Find Full Text PDFFront Microbiol
January 2025
Research Institute of International Agriculture, Technology and Information, Hankyong National University, Anseong-si, Republic of Korea.
Volatile organic compounds (VOCs) produced by potential plant growth-promoting rhizobacteria (PGPR) play an important role in plant interactions. However, the mechanisms underlying this phenomenon are not well understood. Our findings show that the influence of VOCs from the PGPR strain (EXTN-1) on tobacco plant growth is dependent on the culture media used.
View Article and Find Full Text PDFWest Afr J Med
September 2024
Medical Microbiology & Parasitology Department, University of Ilorin, Ilorin, Nigeria. Email:
Background: Neonatal sepsis (NNS) is a known cause of morbidity and mortality especially in developing countries. The global resistance scourge may worsen the management outcomes of NNS. This study aims to determine the current profile of bacteriological agents of NNS, their resistance status and associated mortality in our setting.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
Nitrogen inputs for sustainable crop production for a growing population require the enhancement of biological nitrogen fixation. Efforts to increase biological nitrogen fixation include bioprospecting for more effective nitrogen-fixing bacteria. As bacterial nitrogenases are extremely sensitive to oxygen, most primary isolation methods rely on the use of semisolid agar or broth to limit oxygen exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!