A dihydropyridine-based chemical delivery system (CDS), intended to improve drug delivery to the brain, was investigated with a series of analogues of the anticonvulsant striripentol. In vitro experiments demonstrated that the rates of hydrolysis of the corresponding pyridinium conjugates were influenced markedly by small changes in the structure of the drug moiety to be released. Thus, allylic esters were hydrolyzed rapidly to drug in all aqueous media, while the analogous saturated esters and an allylic amide derivative were almost totally stable. The mechanism of hydrolysis, which is particular to this series of CDS conjugates, appeared to occur via ionization to a resonance-stabilized carbocation intermediate. The same CDS compounds were investigated in vivo and compared to the corresponding drugs after intravenous administration. Only those CDS compounds that were found to hydrolyze in vitro released appreciable amounts of drug in vivo. Prolonged release of the drug from the CDS in the brain could be demonstrated for these compounds, but the gain in the ratio of brain-to-plasma AUC when the CDS was administered depended on the innate distribution characteristics of the drug. Thus, the drug D3, which had a high brain-to-plasma AUC ratio, did not show an improvement in this ratio when administered as CDS3. In contrast, stiripentol with a poor brain-to-plasma AUC ratio showed a two- to threefold increase in this ratio when administered as a CDS. These investigations highlight the need for a thorough understanding of the mechanism of drug release and the importance of the pharmacokinetic properties of the drug in designing a carrier system for delivery of drugs to the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1015885530405DOI Listing

Publication Analysis

Top Keywords

brain-to-plasma auc
12
drug
9
dihydropyridine-based chemical
8
chemical delivery
8
cds compounds
8
auc ratio
8
ratio administered
8
cds
7
ratio
5
vitro vivo
4

Similar Publications

Article Synopsis
  • - Post-traumatic epilepsy (PTE) is a serious complication following traumatic brain injury (TBI) that increases health risks and mortality rates; researchers within the EpiBioS4Rx study aim to find therapies to prevent PTE in rat models.
  • - The study focuses on sodium selenate, which has shown promise in reducing seizure development post-TBI by acting on specific proteins in the brain; experiments measure how the drug is processed in rats' bodies and its effectiveness in reaching the brain.
  • - Results indicate that sodium selenate undergoes rapid transformation in the body and demonstrates complex clearance and distribution patterns, suggesting it effectively crosses the blood-brain barrier, which is crucial for its potential as a therapeutic agent.
View Article and Find Full Text PDF

The ATP-Binding Cassette Transporter-Mediated Efflux Transport of Ganciclovir at the Blood-Brain Barrier.

Eur J Drug Metab Pharmacokinet

September 2024

Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China.

Background And Objective: Recent studies have highlighted the key role of the ATP-binding cassette (ABC) transporters, including the P-glycoprotein (P-gp), the breast cancer resistance protein (BCRP), and the multi-drug resistance protein 4 (MRP4) in limiting the brain distribution of several antiviral agents. In this study, we investigated whether the inhibition of these transporters increases the permeability of the blood-brain barrier (BBB) to ganciclovir.

Methods: A microdialysis and high-performance liquid chromatographic method was developed to monitor the concentrations of unbound ganciclovir in the brain interstitial fluid and plasma, with and without the administration of ABC transporter inhibitors.

View Article and Find Full Text PDF

Developing an oral formulation for the chemotherapeutic cabazitaxel might improve its patient-friendliness, costs, and potentially exposure profile. Cabazitaxel oral availability is restricted by CYP3A-mediated first-pass metabolism, but can be substantially boosted with the CYP3A inhibitor ritonavir. We here tested whether adding the ABCB1/P-glycoprotein inhibitor elacridar to ritonavir-boosted oral cabazitaxel could further improve its tissue exposure using wild-type, CYP3A4-humanized and Abcb1a/b mice.

View Article and Find Full Text PDF

Adagrasib (Krazati™) is the second FDA-approved specific KRAS inhibitor for non-small cell lung cancer (NSCLC) patients harboring this mutation. The impact of the drug efflux transporters ABCB1 and ABCG2, and the drug-metabolizing enzymes CYP3A and carboxylesterase 1 (CES1) on the pharmacokinetics of oral adagrasib were studied using genetically modified mouse models. Adagrasib was potently transported by human ABCB1 and modestly by mouse Abcg2 in vitro.

View Article and Find Full Text PDF

EAI045 is a fourth-generation allosteric tyrosine kinase inhibitor (TKI) of the epidermal growth factor receptor (EGFR). It targets T790M and C797S EGFR mutants in the treatment of non-small cell lung cancer (NSCLC). EAI045 and cetuximab combined induce tumor regression in mouse models of EGFR-mutant lung cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!