Background: Previous studies have shown that therapeutic hypothermia could improve neurologic recovery when induced after cardiac arrest, but dynamic changes in cerebral metabolism have not been studied at low temperature. In this study, we aim to evaluate hypothermia-induced changes in pigs' cerebral metabolism by (1)H-magnetic resonance spectroscopy (¹H-MRS).

Material And Methods: Ten anesthetized Landrace (25-30 kg) pigs were randomized into 2 groups and subjected to 4 minutes of ventricular fibrillation, followed by cardiopulmonary resuscitation. The hypothermic group was given an infusion of 30 mL/kg of 4°C normal saline (NS) at an infusion rate of 1.33 mL/kg per minute starting after restoration of spontaneous circulation (ROSC), then 10 mL/kg per hour for 4 hours. The control group received the same infusion of room temperature NS. Core temperature and hemodynamic variables were monitored at baseline and repeatedly for 240 minutes after ROSC. The ¹H-MRS scans were obtained at baseline, 1 hour, and 3 hours after successful ROSC to observe the dynamic changes of cerebral metabolism at different temperatures.

Results: The mean reduction of temperature was 1.5°C ± 0.4°C in the hypothermic group. There was no difference in hemodynamic variables between groups. ¹H-MRS detected statistically significant (P < .01) changes in cerebral metabolism between the control and hypothermia groups (P < .01).

Conclusions: Infusion of 4°C NS can effectively reduce cerebral metabolism after successful cardiopulmonary resuscitation and have a protective effect on the recovery of neurologic function. The ¹H-MRS technology can be used as a powerful tool to evaluate interventions in the treatment of cardiopulmonary resuscitation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajem.2010.04.001DOI Listing

Publication Analysis

Top Keywords

cerebral metabolism
24
changes cerebral
12
cardiopulmonary resuscitation
12
resonance spectroscopy
8
therapeutic hypothermia
8
cardiac arrest
8
dynamic changes
8
hypothermic group
8
hour hours
8
hemodynamic variables
8

Similar Publications

Background And Objectives: Previous research has demonstrated increased brain amyloid plaque load in individuals with childhood-onset epilepsy in late middle age. However, the trajectory of this process is not yet known. The aim of this study was to determine whether individuals with a history of childhood-onset epilepsy show progressive brain aging in amyloid accumulation in late adulthood (Turku Adult Childhood-Onset Epilepsy study, TACOE).

View Article and Find Full Text PDF

Background And Objectives: Despite the absence of acute lesion activity in multiple sclerosis (MS), chronic neurodegeneration continues to progress, and a potential underlying mechanism could be the kynurenine pathway (KP). Prolonged activation of the KP from chronic inflammation is known to exacerbate the progression of neurodegenerative diseases through the production of neurotoxic metabolites. Among the 8 KP metabolites, six of them, namely kynurenine (KYN), 3-hydroxylkynurenine (3HK), anthranilic acid (AA), kynurenic acid (KYNA), and quinolinic acid (QUIN), have been associated with neurodegeneration.

View Article and Find Full Text PDF

Conformational Antibodies to Proteolipid Protein-1 and Its Peripheral Isoform DM20 in Patients With CNS Autoimmune Demyelinating Disorders.

Neurol Neuroimmunol Neuroinflamm

March 2025

Neuroimmunology Laboratory and Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy.

Background And Objectives: Antibodies to proteolipid protein-1 (PLP1-IgG), a major central myelin protein also expressed in the peripheral nervous system (PNS) as the isoform DM20, have been previously identified mostly in patients with multiple sclerosis (MS), with unclear clinical implications. However, most studies relied on nonconformational immunoassays and included few patients with non-MS CNS autoimmune demyelinating disorders (ADDs). We aimed to investigate conformational PLP1-IgG in the whole ADD spectrum.

View Article and Find Full Text PDF

Background: Lowering barometric pressure (LP) can exacerbate neuropathic pain. However, animal studies in this field are limited to a few conditions. Furthermore, although sympathetic involvement has been reported as a possible mechanism, whether the sympathetic nervous system is involved in the hypothalamic-pituitary-adrenal (HPA) axis remains unknown.

View Article and Find Full Text PDF

Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA) has been considered as a strategy to decrease tau and amyloid-beta phosphorylation, aggregation, and pathology in Alzheimer's disease (AD). There is still more to be learned about the impact of enhancing global protein O-GlcNAcylation, which is important for understanding the potential of using OGA inhibition to treat neurodegenerative diseases. In this study, we investigated the acute effect of pharmacologically increasing O-GlcNAc levels, using the OGA inhibitor Thiamet G (TG), in normal mouse brains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!