Recording single motor proteins in the cytoplasm of mammalian cells.

Methods Enzymol

Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.

Published: October 2010

Biomolecular motors are central to the function and regulation of all cellular transport systems. The molecular mechanisms by which motors generate force and motion along cytoskeletal filaments have been mostly studied in vitro using a variety of approaches, including several single-molecule techniques. While such studies have revealed significant insights into the chemomechanical transduction mechanisms of motors, important questions remain unanswered as to how motors work in cells. To understand how motor activity is regulated and how motors orchestrate the transport of specific cargoes to the proper subcellular domain requires analysis of motor function in vivo. Many transport processes in cells are believed to be powered by single or very few motor molecules, which makes it essential to track, in real time and with nanometer resolution, individual motors and their associated cargoes and tracks. Here we summarize, contrast, and compare recent methodological advances, many relying on advanced fluorescent labeling, genetic tagging, and imaging techniques, that lay the foundation for groundbreaking approaches and discoveries. In addition, to illustrate the impact and capabilities for these methods, we highlight novel biological findings where appropriate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0076-6879(10)75004-7DOI Listing

Publication Analysis

Top Keywords

single motor
8
mechanisms motors
8
motors
6
recording single
4
motor
4
motor proteins
4
proteins cytoplasm
4
cytoplasm mammalian
4
mammalian cells
4
cells biomolecular
4

Similar Publications

Minimally invasive parafascicular surgery (MIPS) with the use of tubular retractors achieve a safe resection in deep seated tumours. Diffusion changes noted on postoperative imaging; the significance and clinical correlation of this remains poorly understood. Single centre retrospective cohort study of neuro-oncology patients undergoing MIPS.

View Article and Find Full Text PDF

Myoelectric pattern recognition with virtual reality and serious gaming improves upper limb function in chronic stroke: a single case experimental design study.

J Neuroeng Rehabil

January 2025

Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Vita Stråket 12, Floor 4, 41346, Gothenburg, Sweden.

Background: Myoelectric pattern recognition (MPR) combines multiple surface electromyography channels with a machine learning algorithm to decode motor intention with an aim to enhance upper limb function after stroke. This study aims to determine the feasibility and preliminary effectiveness of a novel intervention combining MPR, virtual reality (VR), and serious gaming to improve upper limb function in people with chronic stroke.

Methods: In this single case experimental A-B-A design study, six individuals with chronic stroke and moderate to severe upper limb impairment completed 18, 2 h sessions, 3 times a week.

View Article and Find Full Text PDF

Sarcopenia, the pathological age-related loss of muscle mass and strength, contributes to physical decline, frailty, and diminished healthspan. The impact of sarcopenia is expected to rise as the aging population grows, and treatments remain limited. Therefore, novel approaches for enhancing physical function and strength in older adults are desperately needed.

View Article and Find Full Text PDF

Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.

View Article and Find Full Text PDF

SMC motor proteins extrude DNA asymmetrically and can switch directions.

Cell

January 2025

Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands. Electronic address:

Structural maintenance of chromosomes (SMC) complexes organize the genome via DNA loop extrusion. Although some SMCs were reported to do so symmetrically, reeling DNA from both sides into the extruded DNA loop simultaneously, others perform loop extrusion asymmetrically toward one direction only. The mechanism underlying this variability remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!