Emodin is a principle ingredient isolated from rhubarb rhizome, which is commonly used for constipation or pain-related diseases in traditional Chinese medicine (TCM) practice. The transient receptor potential vanilloid 1 ion channel proteins (TRPV1) are abundantly expressed in the peripheral sensory neurons and are assumed to act as a kind of nociceptor involved in the perception of pain and development of hyperalgesia. The aim of this study was to further unravel the analgesic mechanisms of rhubarb through investigating the effects of its main constitutive ingredient emodin on the expression of TRPV1 mRNA as well as on its calcium- mediating functions in vitro. The primary DRG neurons with a high purity and viability were obtained, and the TRPV1 mRNA expression levels were examined by using real-time RT-PCR and the elevated amplitudes of intracellular [Ca(2+)]i in the DRG neurons evoked by TRPV1 agonist capsaicin were examined by confocal microscopy. The results showed that emodin could significantly down-regulate both the mRNA expression of TRPV1 and the capsaicin-evoked intracellular fluorescent intensity in the DRG neurons under both 37 degrees C and 39 degrees C in vitro. Concomitantly, all of the changes induced by emodin could not be blocked by pretreatment of the primary neurons with capsazepine, an antagonist of TRPV1. In conclusion, we established that the mRNA expression level of TRPV1 and its calcium-mediating function in naive DRG neurons could be down-regulated by emodin through perhaps the non-TRPV1 channel pathways, and this might be the molecular mechanisms for rhubarb to inhibit hyperalgesia induced by inflammatory stimuli.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0192415X1000824XDOI Listing

Publication Analysis

Top Keywords

drg neurons
20
expression trpv1
12
trpv1 mrna
12
mrna expression
12
trpv1
8
mechanisms rhubarb
8
neurons
7
emodin
6
expression
5
mrna
5

Similar Publications

Plasmalogens Activate AKT/mTOR Signaling to Attenuate Reactive Oxygen Species Production in Spinal Cord Injury.

Curr Gene Ther

January 2025

Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China.

Background: Plasmalogens, the primary phospholipids in the brain, possess intrinsic antioxidant properties and are crucial components of the myelin sheath surrounding neuronal axons. While their neuroprotective effects have been demonstrated in Alzheimer's disease, their potential benefits in spinal cord injury remain unexplored. This study investigates the reparative effects of plasmalogens on spinal cord injury and the underlying mechanisms.

View Article and Find Full Text PDF

Chronic pain is a debilitating disease and remains challenging to treat. Morphine serves as the most commonly used drug for the treatment of pathological pain. However, detrimental side effects (e.

View Article and Find Full Text PDF

Cycloastragenol promotes dorsal column axon regeneration in mice.

Front Cell Neurosci

January 2025

Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.

Introduction: Cycloastragenol (CAG) has a wide range of pharmacological effects, including anti-inflammatory, antiaging, antioxidative, and antitumorigenic properties. In addition, our previous study showed that CAG administration can promote axonal regeneration in peripheral neurons. However, whether CAG can activate axon regeneration central nervous system (CNS) remains unknown.

View Article and Find Full Text PDF

Aging negatively impacts central nervous system function; however, the cellular impact of aging in the peripheral nervous system remains poorly understood. Aged individuals are more likely to experience increased pain and slower recovery after trauma. Such injury can damage vulnerable peripheral axons of dorsal root ganglion (DRG) neurons resulting in somatosensory dysfunction.

View Article and Find Full Text PDF

Background: While TRPA1 serves as a therapeutic target for nociceptive pain, its role in acute visceral pain induced by uterine cervical dilation (UCD) remains an enigma. This study aims to elucidate the upstream and downstream mechanisms of TRPA1 in the context of UCD-induced acute visceral pain.

Methods: The UCD rats were administered with SAH (inhibitor of the METTL3-METTL14 complex) via intrathecal tubing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!