Objective: To investigate the expression of SMAD proteins in human thyroid tissues since the inactivation of TGF-beta/activin signaling components is reported in several types of cancer. Phosphorylated SMAD 2 and SMAD3 (pSMAD2/3) associated with the SMAD4 induce the signal transduction generated by TGF-beta and activin, while SMAD7 inhibits this intracellular signaling. Although TGF-beta and activin exert antiproliferative roles in thyroid follicular cells, thyroid tumors express high levels of these proteins.
Materials And Methods: The protein expression of SMADs was evaluated in multinodular goiter, follicular adenoma, papillary and follicular carcinomas by immunohistochemistry.
Results: The expression of pSMAD2/3, SMAD4 and SMAD7 was observed in both benign and malignant thyroid tumors. Although pSMAD2/3, SMAD4 and SMAD7 exhibited high cytoplasmic staining in carcinomas, the nuclear staining of pSMAD2/3 was not different between benign and malignant lesions.
Conclusions: The finding of SMADs expression in thyroid cells and the presence of pSMAD2/3 and SMAD4 proteins in the nucleus of tumor cells indicates propagation of TGF-beta/activin signaling. However, the high expression of the inhibitory SMAD7, mostly in malignant tumors, could contribute to the attenuation of the SMADs antiproliferative signaling in thyroid carcinomas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/s0004-27302010000400010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!