Metallo-ß-lactamases (MBL) are an emerging cause of bacterial resistance to antibiotic treatment. The VIM-2 ß-lactamase is the most commonly encountered MBL in clinical isolates worldwide. Described here are potent and selective small molecule inhibitors of VIM-2 containing the arylsulfonyl-NH-1,2,3-triazole chemotype that potentiate the efficacy of the ß-lactam, imipenem, in E. coli.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901175 | PMC |
http://dx.doi.org/10.1021/ml900022q | DOI Listing |
Nat Microbiol
January 2025
Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
Carbapenems are last-resort antibiotics for treating bacterial infections. The widespread acquisition of metallo-β-lactamases, such as VIM-2, contributes to the emergence of carbapenem-resistant pathogens, and currently, no metallo-β-lactamase inhibitors are available in the clinic. Here we show that bacteria expressing VIM-2 have impaired growth in zinc-deprived environments, including human serum and murine infection models.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
December 2024
Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland.
To evaluate the in-vitro activity of the novel commercially-available drugs, including meropenem-vaborbactam (MEV), ceftazidime-avibactam (CZA), ceftolozane-tazobactam (C/T), imipenem-relebactam (IPR) as well as cefiderocol (FDC), against carbapenem-resistant Pseudomonas spp. (CRP) isolates. All CRP isolates collected at the Swiss National Reference Laboratory (NARA) over the year 2022 (n = 170) have been included.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom.
While relative binding free energy (RBFE) calculations using alchemical methods are routinely carried out for many pharmaceutically relevant protein targets, challenges remain. For example, open-source tools do not support the easy setup and simulation of metalloproteins, particularly when ligands directly coordinate to the metal site. Here, we evaluate the performance of RBFE methods for KPC-2, a serine-β-lactamase (SBL), and two nonbonded metal parameter setups for VIM-2, a metallo-β-lactamase (MBL) with two active site zinc ions.
View Article and Find Full Text PDFMicrob Drug Resist
January 2025
Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
Carbapenenemase producers, particularly the metallo-β-lactamase (MBL) types in , have emerged as an urgent threat in health care settings. MBLs require zinc at their catalytic site and can be inhibited by dimercaptosuccinic acid (DMSA), a metal chelator known for the treatment of lead and mercury intoxication. Isogenic strains of wild-type and OprD-deleted PA14, were constructed, producing the MBLs VIM-2, NDM-1, SPM-1, IMP-1, and AIM-1, or the non-MBL carbapenemases, GES-5 and KPC-2.
View Article and Find Full Text PDFAntimicrob Agents Chemother
November 2024
Servicio de Microbiología Clínica e Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!