MuRF1 is a member of the TRIM/RBCC superfamily, a gene family that encompasses a large variety of proteins, all sharing the conserved TRIM (Tripartite Motive) sequential array of RING, B-box, and coiled-coil domains. Within this family, MuRF1(also named TRIM63) is a specialized member that contributes to the development of muscle atrophy and sarcopenia. Here we studied MuRF1's role in muscle atrophy during muscle unloading induced by hindlimb suspension. Consistent with previous studies, we found that MuRF1 inactivation leads to an attenuated muscle atrophy response. The amount of protection was higher as compared to the denervation model, and within the 10 day-suspension period the soleus muscle was spared from atrophy in MuRF1-KO mice. Contractility studies on hindlimb suspended muscle tissues suggested that MuRF1's functions extend beyond muscle trophicity and implicate MuRF1 in muscle fatigue and MLC phosphorylation control: soleus muscle from MuRF1-KO mice fatigued significantly faster and in addition showed a reduced posttetanic twitch potentiation. Thus the present work further established the role of MuRF1 in muscle atrophy and for the first time shows that MuRF1 plays a role in muscle fatigue and twitch potentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896721 | PMC |
http://dx.doi.org/10.1155/2010/693741 | DOI Listing |
Medicine (Baltimore)
January 2025
Department of Clinical Nutrition, Tongde Hospital of Zhejiang Province, Hangzhou, China.
There are limited studies on the phase angle (PhA) and sarcopenic obesity (SO) in the Chinese population. This study aimed to establish 50 kHz-PhA reference data for SO population, and to evaluate the correlation between 50 kHz-PhA and SO. A total of 10,312 participants including 5415 men and 4897 women were enrolled in this study, and their resistance and reactance at 50 kHz, and body composition parameters were measured a segmental multifrequency bioelectrical impedance analysis device (InBody 720).
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Biomedical Sciences, University of Padova, Padova, Italy.
Short-term unloading experienced following injury or hospitalisation induces muscle atrophy and weakness. The effects of exercise following unloading have been scarcely investigated. We investigated the functional and molecular adaptations to a resistance training (RT) programme following short-term unloading.
View Article and Find Full Text PDFJ Cancer Res Ther
December 2024
Department of Medical Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People's Republic of China.
Introduction: Cancer cachexia (CC) is characterized by weight loss with specifically reduced skeletal muscles and adipose tissues in patients with late-stage cancer. Dihydroartemisinin (DHA), an effective antimalarial derivative of artemisinin, has been demonstrated to have anti-inflammatory and antitumor properties.
Materials And Methods: This study examined the effects of DHA on the Lewis lung carcinoma (LLC)-induced CC mouse model.
Cells
January 2025
Department of Physical Medicine and Rehabilitation, University of Missouri School of Medicine, Columbia, MO 65211, USA.
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease primarily affecting motor neurons, leading to progressive muscle atrophy and paralysis. This review explores the role of Schwann cells in ALS pathogenesis, highlighting their influence on disease progression through mechanisms involving demyelination, neuroinflammation, and impaired synaptic function. While Schwann cells have been traditionally viewed as peripheral supportive cells, especially in motor neuron disease, recent evidence indicates that they play a significant role in ALS by impacting motor neuron survival and plasticity, influencing inflammatory responses, and altering myelination processes.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
Brachial plexus root avulsion (BPRA) is often caused by road collisions, leading to total loss of motor function in the upper limb. At present, effective treatment options remain limited. Edaravone (EDA), a substance that eliminates free radicals, exhibits numerous biological properties, including neuroprotective, antioxidant and anti-inflammatory effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!