Control of transpiration by radiation.

Proc Natl Acad Sci U S A

Forschungszentrum Jülich GmbH, Institut für Chemie und Dynamik der Geosphäre, 52425 Jülich, Germany.

Published: July 2010

The terrestrial hydrological cycle is strongly influenced by transpiration--water loss through the stomatal pores of leaves. In this report we present studies showing that the energy content of radiation absorbed by the leaf influences stomatal control of transpiration. This observation is at odds with current concepts of how stomata sense and control transpiration, and we suggest an alternative model. Specifically, we argue that the steady-state water potential of the epidermis in the intact leaf is controlled by the difference between the radiation-controlled rate of water vapor production in the leaf interior and the rate of transpiration. Any difference between these two potentially large fluxes is made up by evaporation from (or condensation on) the epidermis, causing its water potential to pivot around this balance point. Previous work established that stomata in isolated epidermal strips respond by opening with increasing (and closing with decreasing) water potential. Thus, stomatal conductance and transpiration rate should increase when there is condensation on (and decrease when there is evaporation from) the epidermis, thus tending to maintain homeostasis of epidermal water potential. We use a model to show that such a mechanism would have control properties similar to those observed with leaves. This hypothesis provides a plausible explanation for the regulation of leaf and canopy transpiration by the radiation load and provides a unique framework for studies of the regulation of stomatal conductance by CO(2) and other factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922126PMC
http://dx.doi.org/10.1073/pnas.0913177107DOI Listing

Publication Analysis

Top Keywords

water potential
16
control transpiration
12
transpiration radiation
8
stomatal conductance
8
transpiration
5
water
5
control
4
radiation terrestrial
4
terrestrial hydrological
4
hydrological cycle
4

Similar Publications

Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.

Tissue Eng Regen Med

January 2025

College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.

View Article and Find Full Text PDF

Aerogels hold great potential in thermal insulation, catalytic supports, adsorption, and separation, due to their low density, high porosity, and low thermal conductivity. However, their inherent mechanical fragility and limited control functionality pose substantial challenges that hinder their practical use. In this study, a strategy is developed for the fabrication of cross-linked aramid nanofiber aerogels (cANFAs) by combining internanofiber surface cross-linking with ice-templating techniques.

View Article and Find Full Text PDF

The reduction of CO2 to CO provides a promising approach to the production of valuable chemicals through CO2 utilization. However, challenges persist with the rapid deactivation and insufficient activity of catalysts. Herein, we developed a soft-hard dual-template method to synthesize layered MoS2 using inexpensive and scalable templates, enabling facile regulation of sulfur vacancies by controlling the number of layers.

View Article and Find Full Text PDF

Guest-Molecule-Induced Glass-Crystal Transition in Organic-Inorganic Hybrid Antimony Halides.

Inorg Chem

January 2025

College of Chemistry and Materials Science, College of Environmental and Resource Sciences, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.

The glassy state of inorganic-organic hybrid metal halides combines their excellent optoelectronic properties with the outstanding processability of glass, showcasing unique application potential in solar devices, display technologies, and plastic electronics. Herein, by tailoring the organic cation from -phenylpiperazine to dimethylamine gradually, four types of zero-dimensional antimony halides are obtained with various optical and thermal properties. The guest water molecules in crystal (-phenylpiperazine)SbCl·Cl·5HO lead to the largest distortion of the Sb-halogen unit, resulting in the red emission different from the yellow emission of other compounds.

View Article and Find Full Text PDF

Functionalized polymer membrane electrodes based multichannel sensor is used as an electronic tongue to monitor the drinking water (DW) quality simply by measuring the surface electric potential with respect to Ag/AgCl reference electrode in 1 mM aqueous KCl. Changes of minute concentration of dissolved minerals greatly affected the surface potential of the sensor. The three-channel sensor device (electronic tongue) is made by using three different functionalized polymer membrane electrodes, namely, phosphorylated hexadecyl trimethyl ammonium chloride modified polyvinyl alcohol-polyacrylic acid membrane; phosphorylated and crosslinked polyvinyl--ethylene membrane; phosphorylated and crosslinked polyvinyl alcohol membrane, as working electrodes and a Ag/AgCl reference electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!