A gram-negative fenpropathrin-degrading bacterial strain Sphingobium sp. JQL4-5 was isolated from the wastewater treatment sludge of an insecticide factory. Strain JQL4-5 showed the ability to degrade other pyrethroid insecticides, but it was not able to degrade methyl parathion. To enhance its degrading range of substrate, a methyl parathion hydrolase gene (mpd) was successfully introduced into the chromosome of strain JQL4-5 with a mini-Tn-transposon system. A genetically engineered microorganism (GEM) named JQL4-5-mpd resulted, which was capable of simultaneously degrading methyl parathion and fenpropathrin. Soil treatment results indicated that JQL4-5-mpd is a promising multifunctional bacterium in the bioremediation of multiple pesticide-contaminated environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2010.06.010 | DOI Listing |
Anal Methods
January 2025
Chongqing Key Laboratory of New Energy Storage Materials and Devices, School of Science, Chongqing University of Technology, Chongqing 400054, P. R. China.
In this work, a peroxidase-like (POD-like) nanozyme of Fe/P-NC was synthesized by doping phosphorus (P) and nitrogen (N) to manipulate iron (Fe) activity centers, which showed catalytic activity and kinetics comparable to those of natural HRP. Based on the efficient POD-like activity of the Fe/P-NC nanozyme and cascaded catalytic reactions with acetylcholinesterase (AChE), we constructed a colorimetric, affordable and sensitive sensing platform to detect organophosphorus pesticides (OPs). In the presence of AChE, the POD-like activity of the prepared Fe/P-NC was suppressed, which weakened the Fe/P-NC-catalyzed oxidation of TMB.
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemical and Biomolecular Engineering, University of Connecticut, CT, 06269, United States. Electronic address:
This study applies a periodic table-guided approach to select and investigate hafnium oxide (HfO), in conjunction with reduced graphene oxide (rGO), for the electrochemical determination of methyl parathion (MP), an organophosphate insecticide. MP poses significant ecological and health risks due to its high toxicity, and despite bans, illegal use has been reported, especially in the global south. To address these challenges, an electrode modified with a nanocomposite of rGO/HfO was first constructed for MP detection.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China.
Organophosphorus pesticides (OPs) are widely used in agricultural production, posing a great threat to human health and the environment. Given that different OPs present different toxicology and toxicities, identifying individual pesticide residues becomes important for assessing food safety and environmental implications. In this work, a kinetics difference-driven analyte hydrolysis strategy is proposed for the first time and validated to identify -nitrophenyl pesticides by developing an organophosphorus hydrolase-like nanozyme-coded sensor array.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China.
The bioaugmentation performance is severely reduced in the treatment of high-saline pesticide wastewater because the growth and degradation activity of pesticide degraders are significantly inhibited by high salt concentrations. In this study, a heterologous biodegradation pathway comprising the seven genes mpd/pnpABCDEF responsible for the bioconversion of p-nitrophenol (PNP)-substituted organophosphorus pesticides (OPs) into β-oxoadipate and the genes encoding Vitreoscilla hemoglobin (VHb) and green fluorescent protein (GFP) were integrated into the genome of a salt-tolerant chassis Halomonas cupida J9, to generate a genetically engineered halotolerant degrader J9U-MP. RT-PCR assays demonstrated that the nine exogenous genes are successfully transcribed to mRNA in J9U-MP.
View Article and Find Full Text PDFMikrochim Acta
January 2025
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
To enhance the application performance of graphdiyne (GDY) in electrochemical sensing, carbon nanotubes (CNTs) were grown in situ to construct three-dimensional nanoarchitectures of GDY-CNTs composites. GDY-CNTs showed superior electrochemical properties and detection response to MP when compared with GDY, as the in situ growth of CNTs significantly increased the electrode surface area and enhanced the electron transfer process. GDY-CNTs were successfully used to construct electrochemical sensors for methyl parathion (MP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!