The aim of this study was to investigate whether Rhodiola crenulata extract and tyrosol, a major bioactive phenolic compound present in Rhodiola, change the activities of endogenous antioxidant enzyme response (AER) and energy pathways linked to proline-mediated pentose phosphate pathway (PPP) during adipogenesis. Treatment with Rhodiola extracts inhibited the activities of proline dehydrogenase (PDH) and glucose-6-phosphate dehydrogenase (G6PDH) as well as lipid accumulation and reactive oxygen species (ROS) production. The inhibition of PDH and G6PDH activities by Rhodiola likely prevented proline oxidation required for critical ATP generation that is coupled to AER via the PPP, leading to inhibition of adipogenesis. Rhodiola extracts dose-dependently increased superoxide dismutase (SOD) activity, resulting in a reduced ROS level during adipogenesis. Moreover, the effects of tyrosol, a major bioactive compound in Rhodiola species, were directly correlated with all observed effects by Rhodiola extracts. These results indicate that the antiadipogenic effects of Rhodiola extracts can be attributed to a phenolic tyrosol that may potentially disrupt proline-mediated energy generation and AER via PPP, resulting in the suppression of adipogenesis and lipid accumulation. This further provides a biochemical rationale to identify the roles of phenolics that modulate the cellular redox environment and therefore have relevance for obesity management.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ptr.3236DOI Listing

Publication Analysis

Top Keywords

rhodiola extracts
16
inhibition adipogenesis
8
antioxidant enzyme
8
enzyme response
8
pentose phosphate
8
phosphate pathway
8
rhodiola
8
tyrosol major
8
major bioactive
8
compound rhodiola
8

Similar Publications

In this study, 34 deep eutectic solvents (DESs) were successfully prepared for the extraction of proanthocyanidin from Rhodiolae Crenulatae Radix et Rhizomes. The extraction process was optimized using single factor exploration and Box-Behnken design-response surface analysis. The extraction rate was significantly improved when the molar ratio of choline chloride to 1,3-propanediol was 1:3.

View Article and Find Full Text PDF

The prevalence of cardiovascular-kidney-metabolic (CKM) syndrome is increasing rapidly, and cardiovascular complications pose significant risks in individuals with kidney disease and metabolic dysfunction. Understanding the mechanisms of CKM disorders is crucial, as is the discovery of novel preventive treatments. This study aimed to examine the therapeutic effects of a specially formulated nitric oxide-enhancing food additive in a mouse model of CKM syndrome induced by unilateral nephrectomy (UNX) in combination with chronic Western diet (WD) feeding.

View Article and Find Full Text PDF

Engineering for Efficient Synthesis of Salidroside.

J Agric Food Chem

December 2024

Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.

Salidroside is a high-value plant-derived glycoside with diverse biological activities, but the main industrial salidroside production method, extraction from plants, is insufficient to meet the growing market demand. The biosynthetic route via microbial fermentation is a sustainable and eco-friendly alternative method. synthesis of the precursor tyrosol was established by introducing the and genes.

View Article and Find Full Text PDF

Salidroside exerts neuroprotective effects on retrograde neuronal death following neonatal axotomy via activation of PI3K/Akt pathway and deactivation of p38 MAPK pathway.

Toxicol Appl Pharmacol

January 2025

Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China. Electronic address:

Salidroside, a glucoside of tyrosol, is a powerful active ingredient extracted from the Chinese herb medicine Rhodiola rosea L.. As a neuroprotective agent, the application of salidroside in combination with neural tissue engineering has recently attracted much attention in peripheral nerve repair and reconstruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!