This study compared respirable dust and nanoparticle concentrations measured by different sampling devices at a titanium dioxide pigment factory. Respirable particle mass concentrations, nanoparticle concentrations, particle size distribution and particle metallic content were measured at different sampling locations. The sampling results of the Multi-orifice Uniform Deposit Impactor (MOUDI) showed that the particle size distribution at this titanium dioxide production factory fell in the range of 1-10 mu m. Generally, the higher levels of the respirable particle mass concentrations and nanoparticle number concentrations were near the packing site of the pigment titanium dioxide production factory. Metal analysis results revealed that the titanium dioxide concentrations in respirable dust and nanoparticles were within the limits specified by National Institute for Occupational Safety and Health (NIOSH). During sampling, particle metallic content analysis is essential for identifying the source of particles and for measuring respirable dust and nanoparticle concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10934529.2010.493792DOI Listing

Publication Analysis

Top Keywords

titanium dioxide
20
respirable dust
16
nanoparticle concentrations
16
dust nanoparticle
12
production factory
12
concentrations
8
dioxide pigment
8
measured sampling
8
respirable particle
8
particle mass
8

Similar Publications

In alignment with the global movement toward reducing animal testing, several reconstructed human epidermis (RHE) models have been created for conducting skin irritation tests. These models have undergone development, verification, validation, and integration into OECD TG 439. Our team has introduced a novel in-house RHE named GB-RHE, and we adhere to OECD TG 439 to pre-validate the model and test its potential employment for nanoparticle irritation studies.

View Article and Find Full Text PDF

Synergetic effects of cerium and titanium on the catalytic performance of NiMnO for selective catalytic reduction of NO by NH.

Environ Sci Pollut Res Int

January 2025

Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.

In this work, NiMnO/TiO-CeO (Ce = 1.15, 2.5, 5, 7.

View Article and Find Full Text PDF

Engineered nanomaterials (ENM) are capable of crossing the placental barrier and accumulating in fetal tissue. Specifically, the ENM nano-titanium dioxide (nano-TiO), has been shown to accumulate in placental and fetal tissue, resulting in decreased birthweight in pups. Additionally, nano-TiO is an established cardiac toxicant and regulator of glucose homeostasis, and exposure in utero may lead to serious maladaptive responses in cardiac development and overall metabolism.

View Article and Find Full Text PDF

Titania (TiO) is one of promising photo catalysts for its high ability to resistant photo corrosion and environmental friendliness, but its photocatalytic activity is too low to be used in industry. To find an approach to solve this problem, graphene oxide (GO), tungsten trioxide (WO) and TiO composite with hollow mesoporous structure was prepared by a two-step spray drying method. The composite was used as raw material to constitute a membrane onto ITO glass to form a membrane photo-anode.

View Article and Find Full Text PDF

As an exceptional 2D nanofiller, graphene oxide (GO) is extensively employed to amplify the protective properties of coatings. The dispersion of GO significantly influences the protective efficacy of the coatings. Here, a surface modification of GO through the integration of nanosized titanium dioxide (TiO) was employed, thereby facilitating the synthesis of an FGO-TiO nanoparticle characterized by a substantial interlayer spacing (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!