Rat hepatoma H4IIE cells were stimulated with dexamethasone and dibutyryl cAMP to increase gene expressions of gluconeogenic enzymes, glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK). Inclusion of catechin-rich green tea beverage (GTB) in the culture medium reduced the up-regulation of these genes as well as that of hepatocyte nuclear factor 4 alpha (HNF4alpha) gene. GTB was fractionated into chloroform-soluble (Fraction I), ethyl acetatesoluble (Fraction II), methanol-soluble (Fraction III) and residual (Fraction IV) fractions. Fractions II and III containing catechins caused an attenuation of the up-regulated expression of these genes as well as the down-regulation of HNF4alpha gene expression. Fraction IV had a synergistic effect on the up-regulation by dexamethasone/dibutyryl cAMP of the PEPCK gene expression and upregulated HNF4alpha gene expression. These results suggest that GTB down-regulated the expression of the HNF4alpha gene to cause the down-regulated gene expression of gluconeogenic enzymes. One reason why GTB did not down-regulate hepatic PEPCK gene expression in previous animal experiments may be that the component(s) acting to up-regulate PEPCK gene expression was more effective in vivo than in cultured cells.

Download full-text PDF

Source
http://dx.doi.org/10.2220/biomedres.31.183DOI Listing

Publication Analysis

Top Keywords

gene expression
28
hnf4alpha gene
16
gluconeogenic enzymes
12
pepck gene
12
gene
10
expression
9
catechin-rich green
8
green tea
8
expression gluconeogenic
8
rat hepatoma
8

Similar Publications

Ischemic stroke is a major cause of adult disability. Early treatment with thrombolytics and/or thrombectomy can significantly improve outcomes; however, following these acute interventions, treatment is limited to rehabilitation therapies. Thus, the identification of therapeutic strategies that can help restore brain function in the post-acute phase remains a major challenge.

View Article and Find Full Text PDF

Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.

View Article and Find Full Text PDF

Malic acid markedly affects watermelon flavor. Reducing the malic acid content can significantly increase the sweetness of watermelon. An effective solution strategy is to reduce watermelon malic acid content through molecular breeding technology.

View Article and Find Full Text PDF

Based on the notion that hypomorphic germline genetic variants are linked to autoimmune diseases, we reasoned that novel targets for cancer immunotherapy might be identified through germline variants associated with greater T-cell infiltration into tumors. Here, we report that while investigating germline polymorphisms associated with a tumor immune gene signature, we identified PKCδ as a candidate. Genetic deletion of PKCδ in mice resulted in improved endogenous antitumor immunity and increased efficacy of anti-PD-L1.

View Article and Find Full Text PDF

Cancer survivors have an increased risk of developing Type 2 diabetes compared to the general population. Patients treated with cisplatin, a common chemotherapeutic agent, are more likely to develop metabolic syndrome and Type 2 diabetes than age- and sex-matched controls. Surprisingly, the impact of cisplatin on pancreatic islets has not been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!