In working environments, especially in confined spaces like greenhouses, elevated concentrations of airborne microorganisms may become a problem for workers' health. Additionally, the use of microbial pest control agents (MPCAs) may increase exposure to microorganisms. The aim of this study was to investigate tomato growers' exposure to naturally occurring bioaerosol components [dust, bacteria, fungi, actinomycetes, (1-->3)-beta-D-glucans, and endotoxin] and MPCAs applied by drip irrigation. Airborne dust was collected with filter samplers and analyzed for microorganisms by plate counts and total counts using a microscope. Analysis of (1-->3)-beta-D-glucan and endotoxin content was performed by kinetic, chromatic Limulus amoebocyte lysate tests. The fungal strain (Trichoderma harzianum) from the biocontrol product Supresivit was identified by PCR analysis. Measurements were performed on the day of drip irrigation and 1 week, 1 month, and 3 months after the irrigation. T. harzianum from Supresivit could be detected only on the day of treatment. Streptomyces griseoviridis, an applied MPCA, was not detected in the air during this investigation. We found that bioaerosol exposure increases during the growth season and that exposure to fungi, bacteria, and endotoxin can reach levels during the harvest period that may cause respiratory symptoms in growers. The collected data indicate that MPCAs applied by drip irrigation do not become airborne later in the season.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935076PMC
http://dx.doi.org/10.1128/AEM.00446-10DOI Listing

Publication Analysis

Top Keywords

drip irrigation
12
growth season
8
trichoderma harzianum
8
streptomyces griseoviridis
8
mpcas applied
8
applied drip
8
irrigation airborne
8
exposure
5
exposure bioaerosols
4
bioaerosols growth
4

Similar Publications

In order to explore the water and fertilizer requirements of eggplants in the western oasis of the river, the experiment was conducted in Minle County of Gansu Province in 2022 and 2023 under three water stress gradients and three nitrogen application levels: (1) moderate water stress (W, 50-60% in field water capacity [FC]), mild water stress (W, 60-70% in FC), and full irrigation (W, 70-80% in FC); (2) low nitrogen (N, 215 kg·ha), medium nitrogen (N, 270 kg·ha), and high nitrogen (N, 325 kg·ha). Moderate and mild water stress were applied during eggplant flowering and fruiting while full irrigation was provided during the other growth stages; a control class (CK) was established with full irrigation throughout the whole plant growth without nitrogen application. This study investigated the effects of water-saving and nitrogen reduction on the yield, quality, and water-nitrogen use efficiency of eggplants in a cold and arid environment in the Hexi Oasis irrigation area of China.

View Article and Find Full Text PDF

Introduction: In order to elucidate the physiological mechanism of post-flowering assimilate transport regulating the formation of yields in arid regions and to provide technological support for further water-saving and high yields in the wheat region in Xinjiang, we conducted a study on the effects of different fertility periods and different degrees of drought and re-watering on the post-flowering dry matter accumulation and transport of spring wheat and the characteristics of grain filling.

Methods: In two spring wheat growing seasons in 2023 and 2024, a split-zone design was used, with the drought-sensitive variety Xinchun 22 (XC22) and drought-tolerant variety Xinchun 6 (XC6) as the main zones and a fully irrigated control during the reproductive period [CK, 75%~80% field capacity (FC)], with mild drought at the tillering stage (T1, 60%~65% FC), moderate drought at the tillering stage (T2, 45%~50% FC), mild drought at the jointing stage (J1, 60%~65% FC), and mild drought at the jointing stage (J2, 45%~50% FC) as the sub-zones.

Results: The dry matter accumulation of the aboveground parts of wheat (stem sheaths, leaves, and spikes), the transfer rate and contribution rate of nutrient organs, the maximum filling rate (V), and the mean filling rate (V) increased significantly after re-watering in the T1 treatment, and decreased with the deepening of the degree of water stress.

View Article and Find Full Text PDF

Assessment of microplastic ecological risk and environmental carrying capacity of agricultural soils based on integrated characterization: A case study.

Sci Total Environ

January 2025

Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China. Electronic address:

Microplastic pollution in agricultural soils poses a significant threat to soil quality and environmental sustainability. This study investigated the composition, abundance, distribution, ecological risk, and environmental carrying capacity of microplastic pollution in the Tarim River Basin (TRB), China. The risk quotient combined with soil environmental carrying capacity (SECC) approaches was proposed to evaluate ecological risks and soil sustainability.

View Article and Find Full Text PDF

Tomato (Jinglu 6335) was selected for assessing the impact of varying fertilizer (F:N-PO-KO) and aeration rates on crop quality, as well as water and fertilizer utilization efficiency during the cyclic aeration subsurface drip irrigation process. Four aeration treatments (O1, O2, O3, and S, representing aeration ratios of 16.25%, 14.

View Article and Find Full Text PDF

The contradiction between increased irrigation demand and water scarcity in arid regions has become more acute for crops as a result of global climate change. This highlights the urgent need to improve crop water use efficiency. In this study, four irrigation volumes were established for drip-irrigated maize under plastic mulch: 2145 m ha (W1), 2685 m ha (W2), 3360 m ha (W3), and 4200 m ha (W4).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!