The WalRK two-component regulatory system coordinates gene expression that maintains cell wall homeostasis and responds to antibiotic stress in low-GC Gram-positive bacteria. Phosphorylated WalR (VicR) of the major human respiratory pathogen Streptococcus pneumoniae (WalR(Spn)) positively regulates transcription of several surface virulence genes and, most critically, pcsB, which encodes an essential cell division protein. Despite numerous studies of several species, little is known about the signals sensed by the WalK histidine kinase or the function of the WalJ ancillary protein encoded in the walRK(Spn) operon. To better understand the functions of the WalRKJ(Spn) proteins in S. pneumoniae, we performed experiments to determine their cellular localization and amounts. In contrast to WalK from Bacillus subtilis (WalK(Bsu)), which is localized at division septa, immunofluorescence microscopy showed that WalK(Spn) is distributed throughout the cell periphery. WalJ(Spn) is also localized to the cell surface periphery, whereas WalR(Spn) was found to be localized in the cytoplasm around the nucleoid. In fractionation experiments, WalR(Spn) was recovered from the cytoplasmic fraction, while WalK(Spn) and the majority of WalJ(Spn) were recovered from the cell membrane fraction. This fractionation is consistent with the localization patterns observed. Lastly, we determined the cellular amounts of WalRKJ(Spn) by quantitative Western blotting. The WalR(Spn) response regulator is relatively abundant and present at levels of approximately 6,200 monomers per cell, which are approximately 14-fold greater than the amount of the WalK(Spn) histidine kinase, which is present at approximately 460 dimers (920 monomers) per cell. We detected approximately 1,200 monomers per cell of WalJ(Spn) ancillary protein, similar to the amount of WalK(Spn).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937396 | PMC |
http://dx.doi.org/10.1128/JB.00578-10 | DOI Listing |
Adv Sci (Weinh)
January 2025
Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529199, P. R. China.
Giant dimeric acceptors (GDAs), a sub-type of acceptor materials for organic solar cells (OSCs), have garnered much attention due to the synergistic advantages of their monomeric and polymeric acceptors, forming a well-defined molecular structure with a giant molecular weight for high efficiency and stability. In this study, for the first time, two new GDAs, DYF-V and DY2F-V are designed and synthesized for OSC operation, by connecting one vinylene linker with the mono-/di-fluorinated end group on two Y-series monomers, respectively. After fluorination, both DYF-V and DY2F-V exhibit bathochromic absorption and denser packing modes due to the stronger intramolecular charge transfer effect and torsion-free backbones.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China.
To achieve the commercialization of organic solar cells (OSCs), it is crucial not only to enhance power conversion efficiency (PCE) but also to improve device stability through rational molecular design. Recently emerging giant molecular acceptor (GMA) materials offer various advantages, such as precise chemical structure, high molecular weight (beneficial to film stability under several external stress), and impressive device efficiency, making them a promising candidate. Here, we report a dendritic hexamer acceptor developed through a branch-connecting strategy, which overcomes the molecular weight bottleneck of GMAs and achieves a high production yield over 58%.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
This study introduces a method for synthesizing electrically conductive hydrogels by incorporating a self-assembled, percolating graphene network. Our approach differs from previous approaches in two crucial aspects: using pristine graphene rather than graphene oxide and self-assembling the percolation network rather than creating random networks by blending. We use pristine graphene at an oil-water interface to stabilize a water-in-oil emulsion, successfully creating hydrogel foams with conductivities up to 15 mS m and tunable porosity.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.
The rapid emergence of multidrug-resistant (MDR) bacteria represents a critical global health threat, underscoring the urgent need for alternative antimicrobial strategies beyond conventional antibiotics. In this study, we report the synthesis of novel biobased antimicrobial polymers bearing quaternary ammonium salts, derived from sustainable feedstocks, maleic anhydride, dimethylaminobenzaldehyde, and furfurylamine. The functional tricyclic oxanorbornene lactam monomer is polymerized via ring opening metathesis polymerization, yielding well-defined polymers with controlled molar masses and low dispersity.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland.
Designing RNA sequences that form a specific structure remains a challenge. Current computational methods often struggle with the complexity of RNA structures, especially when considering pseudoknots or restrictions related to RNA function. We developed DesiRNA, a computational tool for the design of RNA sequences based on the Replica Exchange Monte Carlo approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!