Metal nanoparticles have distinctly different chemical and physical properties than currently investigated oxides. Since pure metallic nanoparticles are igniting at air, carbon stabilized copper nanoparticles were used as representative material for this class. Using copper as a representative example, we compare the cytotoxicity of copper metal nanoparticles stabilized by a carbon layer to copper oxide nanoparticles using two different cell lines. Keeping the copper exposure dose constant, the two forms of copper showed a distinctly different response. Whilst copper oxide had already been reported to be highly cytotoxic, carbon-coated copper nanoparticles were much less cytotoxic and more tolerated. Measuring the two material's intra- and extracellular solubility in model buffers explained this difference on the basis of altered copper release when supplying copper metal or the corresponding oxide particles to the cells. Control experiments using pure carbon nanoparticles were used to exclude significant surface effects. Reference experiments with ionic copper solutions confirmed a similar response of cultures if exposed to copper oxide nanoparticles or ionic copper. These observations are in line with a Trojan horse-type mechanism and illustrate the dominating influence of physico-chemical parameters on the cytotoxicity of a given metal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2010.05.012 | DOI Listing |
Environ Res
January 2025
Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea. Electronic address:
Toxic and carcinogenic compounds, such as synthetic dyes and polyphenols, were widely employed and released as pollutants in a variety of industries, including textiles, food, and cosmetics. Biological oxidation process that used oxidizing enzymes to breakdown pollutant compounds were environmentally favorable. However, due to the cell toxicity of metal ions supplements used for the biosynthesis of oxidizing enzymes like laccase, their efficient application for biological degradation is limited.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
Coordinatively unsaturated copper (Cu) has been demonstrated to be effective for electrifying CO reduction into C products by adjusting the coupling of C-C intermediates. Nevertheless, the intuitive impacts of ultralow coordination Cu sites on C products are scarcely elucidated due to the lack of synthetic recipes for Cu with low coordination numbers and its vulnerability to aggregation under reductive potentials. Herein, computational predictions revealed that Cu sites with higher levels of coordinative unsaturation favored the adsorption of C and C intermediates.
View Article and Find Full Text PDFNat Prod Res
January 2025
Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India.
Current study investigates the medicinal applications of (Palash), the state flower of Jharkhand, India, focusing on synthesising biomodified copper oxide nanoparticles (CuO-NPs) and its antifungal properties. Flavonoid content in the flower extract was quantified by aluminium chloride colorimetric analysis. CuO-NPs were synthesised via co-precipitation method and then modified with methanolic flower extract.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
Resveratrol, a bioactive phytoalexin, has been extensively studied as a pharmaceutical and nutraceutical candidate for the treatment of various diseases. Although its therapeutic effects have been largely attributed to its anti-oxidant properties, its underlying mechanisms and dose dependency are not well understood. Recent studies have shown that cell-free chromatin particles (cfChPs), which are released daily from billions of dying cells, can enter circulation and be internalized by healthy cells, wherein they trigger various damaging effects, including double-strand DNA breaks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!