Haloperidol a typical antipsychotic commonly used in the treatment of schizophrenia causes neuronal damage and extrapiramidal symptoms after several years of treatment. These symptoms have been associated with increased levels of oxidative stress. Reactive oxygen species produce cytoskeletal collapse and an excessive phosphorylation of tau, a microtubule-associated protein that plays a key role in microtubule stabilization, and in growth cone and neurite formation, which are cytoskeletal phenotypes that participate in neurodevelopment. Thus, we hypothesized that haloperidol produces neurocytoskeletal disorganization by increasing free radicals and tau hyperphosphorylation, and consequently, the loss of neurodevelopmental cytoskeletal phenotypes, neurites and growth cones. The purpose of this work was the characterization of neuronal cytoskeletal changes caused by haloperidol in neuroblastoma N1E-115 cells. We also studied the mechanisms by which haloperidol causes cytoskeletal changes. The results showed that haloperidol at 100microM caused a complete cytoskeleton collapse in the majority of the cells. Melatonin, a free radical scavenger, blocks tau hyperphosphorylation, and microtubule disorganization caused by haloperidol in a dose-response mode. Additionally, the indole blocks lipoperoxide formation in haloperidol treated cells. The results indicate that free radicals and tau hyperphosphorylation produced by haloperidol caused a cytoskeletal collapse and the lost of growth cones and neurites. These effects were blocked by melatonin. Data suggest that extrapiramidal symptoms in schizophrenic patients can be produced by cytoskeletal disorganization during adult brain neurodevelopment after prolonged haloperidol treatment that can be prevented by melatonin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2010.06.057 | DOI Listing |
Brain Behav Immun Health
February 2025
Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS), are characterized by progressive neuronal loss and cognitive impairment (CI). The: Cysteine-X-cysteine chemokine ligand 12(CXCL12)/CXC chemokine receptor type 4 (CXCR4)/CXC chemokine receptor type 7 (CXCR7) axis has emerged as a critical molecular pathway in the development of CI in these disorders. This review explores the role of this axis in the pathogenesis of CI across these neurodegenerative diseases, synthesizing current evidence and its implications for targeted therapies.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.
Background: Deoxyribonuclease 2 (DNase II) is pivotal in the clearance of cytoplasmic double stranded DNA (dsDNA). Its deficiency incurs DNA accumulation in cytoplasm, which is a hallmark of multiple neurodegenerative diseases. Our previous study showed that neuronal DNase II deficiency drove tau hyperphosphorylation and neurodegeneration (Li et al.
View Article and Find Full Text PDFExp Neurol
January 2025
Department of Neurology, the Second People's Hospital of Foshan, Foshan 528000, Guangdong Province, China. Electronic address:
A large proportion of Alzheimer's disease (AD) patients suffer from various types of chronic sleep disturbances, including sleep fragmentation (SF). In addition, impaired mitochondrial biogenesis is an important feature of AD, but whether it is altered in sleep disorders has not been fully elucidated. Hence, we aimed to investigate the relationship between SF and mitochondrial biogenesis and the possible impact of SF on AD-related pathology.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada.
Background: Alzheimer's disease (AD) remains incurable, yet its long prodromal phase offers a crucial window for early intervention. Pretangle tau, a precursor to neurofibrillary tangles, plays a key role in early AD pathogenesis. Intervening in pretangle tau pathology could significantly delay the progression of AD.
View Article and Find Full Text PDFSci Rep
January 2025
INSERM, Bergonié Institute, BPH, U1219, CIC-P 1401, University of Bordeaux, Bordeaux, France.
In vitro and animal studies have suggested that inoculation with herpes simplex virus 1 (HSV-1) can lead to amyloid deposits, hyperphosphorylation of tau, and/or neuronal loss. Here, we studied the association between HSV-1 and Alzheimer's disease biomarkers in humans. Our sample included 182 participants at risk of cognitive decline from the Multidomain Alzheimer Preventive Trial who had HSV-1 plasma serology and an amyloid PET scan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!