Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis.

J Genet Genomics

State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China.

Published: June 2010

Boron (B) toxicity to plants is responsible for low crop productivity in many regions of the world. Here we report a novel and effective means to alleviate the B toxicity to plants under high B circumstance. Functional characterization of AtTIP5;1, an aquaporin gene, revealed that overexpression of AtTIP5;1 (OxAtTIP5;1) in Arabidopsis significantly increased its tolerance to high B toxicity. Compared to wild-type plants, OxAtTIP5;1 plants exhibited longer hypocotyls, accelerated development, increased silique production under high B treatments. GUS staining and quantitative RT-PCR (qRT-PCR) results demonstrated that the expression of AtTIP5;1 was induced by high B concentration treatment. Subcellular localization analysis revealed that the AtTIP5;1-GFP fusion protein was localized on the tonoplast membrane, which was consistent with the prediction based on bioinformatics. Taken together, our results suggest that AtTIP5;1 is involved in B transport pathway possibly via vacuolar compartmentation for B, and that overexpression of AtTIP5;1 in plants may provide an effective way to overcome the problem resulting from high B concentration toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1673-8527(09)60057-6DOI Listing

Publication Analysis

Top Keywords

boron toxicity
8
toxicity plants
8
overexpression attip51
8
high concentration
8
attip51
6
toxicity
5
plants
5
high
5
overexpression tonoplast
4
tonoplast aquaporin
4

Similar Publications

Trace contaminants are toxic and their widespread presence in the environment potentially threatens human health. The levels of these pollutants are often difficult to determine directly using instruments owing to the complexities of environment matrices. Hence, pretreatment steps, such as sample purification and concentration, are key along with various processes that enhance the accuracy and sensitivity of the detection method.

View Article and Find Full Text PDF

Engineered extracellular vesicles loaded in boronated cyclodextrin framework for pulmonary delivery.

Carbohydr Polym

March 2025

Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Shenyang Pharmaceutical University, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Extracellular vesicles (EVs) are promising therapeutic carriers for their ideal nano-size and intrinsic biocompatibility, while rapid clearance and limited targeting ability are the major setbacks of EVs. With minimal absorption into the systemic circulation, inhalation for pulmonary disease therapy minimizes off-target toxicity to other organs and offers a safe and effective treatment for respiratory disorders. Herein, a nano-grid carrier made of boronated cyclodextrin framework (BCF) was prepared for pH/HO responsive release of EVs.

View Article and Find Full Text PDF

Background: Boron, a naturally abundant trace element, plays a crucial role in various biological processes and influences important physiological functions such as bone health, immune response, and cellular metabolism. Its applications span diverse scientific fields including anatomy, pharmacology, reproduction, medicine, and agriculture.

Objectives: This review examines the diverse functions of boron-compounds in biological systems and highlights their therapeutic potential, challenges associated with toxicity, and mechanisms underlying their biological interactions.

View Article and Find Full Text PDF

This study aimed to determine the protective role of boric acid in a pregnant rat model of high fructose corn syrup consumption. Consumption of high fructose corn syrup has been associated with adverse health outcomes in humans and animals. Twenty-eight healthy female Wistar albino rats (250-300 g weight and 16-24 weeks old) were randomly distributed into four equal groups (n = 7): Control, Boric acid (BA), High Fructose Corn Syrup (HFCS), HFCS + BA.

View Article and Find Full Text PDF

Boron controls apical dominance in Pea (Pisum sativum) via promoting polar auxin transport.

Physiol Plant

January 2025

International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China.

Plant architecture and subsequent productivity are determined by the shoot apical dominance, which is disturbed by the deficiency of boron, one of the essential trace elements for plant growth and reproduction. However, the mechanism by which B controls shoot apical dominance or axillary bud outgrows under B deficiency is still unclear. This work aimed to investigate the mechanistic basis of this process, with focus on the interaction between B and polar auxin transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!