Computer-aided modelling techniques were used to generate a range of anatomically realistic phantoms of the renal artery from medical images of a 64-slice CT data set acquired from a healthy volunteer. From these data, models of a normal healthy renal artery and diseased renal arteries with 30%, 50%, 70% and 85% stenoses were generated. Investment casting techniques and a low melting point alloy were used to create the vessels with varying degrees of stenosis. The use of novel inserts significantly reduced the time, materials and cost required in the fabrication of these anatomically realistic phantoms. To prevent residual metal remaining in the final phantom lumens a technique employing clingfilm was used to remove all molten metal from the lumen. These novel flow phantoms developed using efficient methods for producing vessels with various degrees of stenosis can provide a means of evaluation of current and emerging ultrasound technology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2010.04.017DOI Listing

Publication Analysis

Top Keywords

anatomically realistic
12
renal artery
12
range anatomically
8
flow phantoms
8
realistic phantoms
8
degrees stenosis
8
development range
4
renal
4
realistic renal
4
artery flow
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!