Ideal biomarkers of Alzheimer's disease (AD) should correlate with accepted measures of pathology in the cerebrospinal fluid (CSF); they should also correlate with, or predict, future clinical decline, and should be readily measured in hundreds to thousands of subjects. Here we explored the utility of automated 3D maps of the lateral ventricles as a possible biomarker of AD. We used our multi-atlas fluid image alignment (MAFIA) method, to compute ventricular models automatically, without user intervention, from 804 brain MRI scans with 184 AD, 391 mild cognitive impairment (MCI), and 229 healthy elderly controls (446 men, 338 women; age: 75.50 +/- 6.81 [SD] years). Radial expansion of the ventricles, computed pointwise, was strongly correlated with current cognition, depression ratings, Hachinski Ischemic scores, language scores, and with future clinical decline after controlling for any effects of age, gender, and educational level. In statistical maps ranked by effect sizes, ventricular differences were highly correlated with CSF measures of Abeta(1-42), and correlated with ApoE4 genotype. These statistical maps are highly automated, and offer a promising biomarker of AD for large-scale studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904619 | PMC |
http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!