Unlabelled: Many studies have focused on the neuroprotective effects of C(60) fullerene-derived nanomaterials. The peculiar structure of C(60) fullerene, which is capable of "adding" multiple radicals per molecule, serves as a "radical sponge," and it can be an effective antioxidant by reducing cytotoxic effects caused by intracellular oxidative stress. In this study, PEG-C(60)-3, a C(60) fullerene derivative incorporating poly(ethylene glycol), and its pentoxifylline-bearing hybrid (PTX-C(60)-2) were investigated against β-amyloid (Aβ)(25-35)-induced toxicity toward Neuro-2A cells. PEG-C(60)-3 and PTX-C(60)-2 significantly reduced Aβ(25-35)-induced cytotoxicity, with comparable activities in decreasing reactive oxygen species and maintaining the mitochondrial membrane potential. Aβ(25-35) treatment elicited adenosine monophosphate-activated protein kinase-associated autophagy. Cytoprotection by PEG-C(60)-3 and PTX-C(60)-2 was partially diminished by an autophagy inhibitor, indicating that the elicited autophagy and antioxidative activities protect cells from Aβ damage. PTX-C(60)-2 was more effective than PEG-C(60)-3 at enduring the induced autophagy. Our results offer new insights into therapeutic drug design using C(60) fullerene-PTX dyad nanoparticles against Aβ-associated diseases.
From The Clinical Editor: The neuroprotective effects of C60 fullerene-derived nanomaterials are known and thought to be related to their capacity of "absorbing" multiple free radicals. In this study, another interesting property is presented: they may enhance autophagy of beta-amyloid peptide, which could minimize the damaging effects of this peptide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nano.2010.06.009 | DOI Listing |
Int J Mol Sci
December 2024
Department of Chemistry and Materials Science, National Institute of Technology, Gunma College, Maebashi 371-8530, Japan.
Cancer treatment has traditionally focused on eliminating tumor cells but faces challenges such as resistance and toxicity. A promising direction involves targeting the tumor microenvironment using CAR T cell immunotherapy, which has shown potential for treating relapsed and refractory cancers but is limited by high costs, resistance, and toxicity, especially in solid tumors. The integration of nanotechnology into ICAM cell therapy, a concept we have named "CAR T nanosymbiosis", offers new opportunities to overcome these challenges.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2024
School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
Chem Sci
February 2024
Graduate School of Environmental Science, Hokkaido University Sapporo Hokkaido 060-0810 Japan
Intracellular singlet oxygen (O) generation and detection help optimize the outcome of photodynamic therapy (PDT). Theranostics programmed for on-demand phototriggered O release and bioimaging have great potential to transform PDT. We demonstrate an ultrasensitive fluorescence turn-on sensor-sensitizer-RGD peptide-silica nanoarchitecture and its O generation-releasing-storing-sensing properties at the single-particle level or in living cells.
View Article and Find Full Text PDFJ Am Chem Soc
December 2023
Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany.
A terrylenedicarboximide-anthraquinone dyad, , with absorption in the second near-infrared region (NIR-II) is obtained as a high-performance chromophore for photothermal therapy (PTT). The synthetic route proceeds by C-N coupling of amino-substituted terrylenedicarboximide (TMI) and 1,4-dichloroanthraquinone followed by alkaline-promoted dehydrocyclization. with extended π-conjugation exhibits an optical absorption band peaking at 1140 nm and extending into the 1500 nm range.
View Article and Find Full Text PDFJ Am Chem Soc
August 2023
Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden.
Developing light-harvesting systems with efficient photoinduced charge separation and long-lived charge-separated (CS) state is desirable but still challenging. In this study, we designed a zinc porphyrin photosensitizer covalently linked with viologen (ZnP-V) that can be prepared into nanoparticles in aqueous solution. In DMF solution, the monomeric ZnP-V dyads show no electron transfer between the ZnP and viologen units.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!