Pharmacological evaluation of the natural constituent of Cannabis sativa, cannabichromene and its modulation by Δ(9)-tetrahydrocannabinol.

Drug Alcohol Depend

Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA.

Published: November 2010

In contrast to the numerous reports on the pharmacological effects of Δ(9)-tetrahydrocannabinol (THC), the pharmacological activity of another substituent of Cannabis sativa, cannabichromene (CBC) remains comparatively unknown. In the present study, we investigated whether CBC elicits cannabinoid activity in the tetrad assay, which consists of the following four endpoints: hypomotility, antinociception, catalepsy, and hypothermia. Because cannabinoids are well documented to possess anti-inflammatory properties, we examined CBC, THC, and combination of both phytocannabinoids in the lipopolysaccharide (LPS) paw edema assay. CBC elicited activity in the tetrad that was not blocked by the CB(1) receptor antagonist, rimonabant. Moreover, a behaviorally inactive dose of THC augmented the effects of CBC in the tetrad that was associated with an increase in THC brain concentrations. Both CBC and THC elicited dose-dependent anti-inflammatory effects in the LPS-induced paw edema model. The CB(2) receptor, SR144528 blocked the anti-edematous actions of THC, but not those produced by CBC. Isobolographic analysis revealed that the anti-edematous effects of these cannabinoids in combination were additive. Although CBC produced pharmacological effects, unlike THC, its underlying mechanism of action did not involve CB(1) or CB(2) receptors. In addition, there was evidence of a possible pharmacokinetic component in which CBC dose-dependently increased THC brain levels following an i.v. injection of 0.3mg/kg THC. In conclusion, CBC produced a subset of behavioral activity in the tetrad assay and reduced LPS-induced paw edema through a noncannabinoid receptor mechanism of action. These effects were augmented when CBC and THC were co-administered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967639PMC
http://dx.doi.org/10.1016/j.drugalcdep.2010.05.019DOI Listing

Publication Analysis

Top Keywords

activity tetrad
12
cbc thc
12
paw edema
12
cbc
11
thc
10
cannabis sativa
8
sativa cannabichromene
8
pharmacological effects
8
tetrad assay
8
thc brain
8

Similar Publications

Beyond genomic weaving: molecular roles for CTCF outside cohesin loop extrusion.

Curr Opin Genet Dev

December 2024

Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA. Electronic address:

CCCTC-binding factor (CTCF) is a key regulator of 3D genome organization and transcriptional activity. Beyond its well-characterized role in facilitating cohesin-mediated loop extrusion, CTCF exhibits several cohesin-independent activities relevant to chromatin structure and various nuclear processes. These functions include patterning of nucleosome arrangement and chromatin accessibility through interactions with ATP-dependent chromatin remodelers.

View Article and Find Full Text PDF

Abnormal transition from meiosis I to meiosis II induces male sterility in a seedless artificial hybrid of citrus.

Mol Breed

January 2025

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China.

Unlabelled: Male sterility is an important trait for breeding and for the seedless fruit production in citrus. We identified one seedling which exhibiting male sterility and seedlessness (named hereafter), from a cross between two fertile parents, with sour orange () as seed parent and Ponkan mandarin () as pollen parent. Analysis using pollen viability staining, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) revealed that the mature pollen of the was aborted, displaying collapse and deformity.

View Article and Find Full Text PDF

Varied chromosome distribution behaviours during meiosis in triploid Chinese chives contribute to the formation of viable pollen.

Chromosome Res

December 2024

Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China.

Triploids play an important role in the polyploidization process and are considered a bridge between diploids and polyploids. To inform plant polyploidization research and polyploid breeding, it is important to explore chromosome behaviour during triploid pollen development, pollen fertility problems in triploids and the potential value of utilizing triploids. In this study, acetocarmine, carbol fuchsin and fluorescence staining methods were used to observe microsporogenesis and microspore development in fertile triploid Chinese chives.

View Article and Find Full Text PDF

In this contribution, the divergent modular synthesis of photoredox-active dyads, triads and a tetrad descending from one ligand precursor is presented by combining "chemistry-on-the-ligand", stepwise complexation and "chemistry-on-the-complex" with minimal synthetic efforts. In the final step, Pd-mediated borylation and subsequent Suzuki-Miyaura cross-coupling was employed to introduce the different (multi)donor moieties at the preassembled P-A dyad subunit. The (spectro-)electrochemical data revealed preserved redox properties of the subunits and minimal driving force for oxidative quenching by the naphthalene diimide-based (NDI) acceptor and, thus, high-energy charge separated (CS) states.

View Article and Find Full Text PDF

.

Mol Pharmacol

November 2024

Departments of Psychiatry and Pharmacology, University of California, San Francisco, United States

Endocytosis of the μ-type opioid receptor (MOR) is a fundamentally important cellular regulatory process that is characteristically driven less effectively by partial relative to full agonist ligands. Such agonist-selective endocytic discrimination depends on how strongly drugs promote MOR binding to β-arrestins and this, in turn, depends on how strongly they stimulate phosphorylation of the MOR cytoplasmic tail by GPCR kinases (GRKs) from the GRK2/3 subfamily. While these relatively 'downstream' steps in the agonist-selective endocytic pathway are now well defined, it remains unclear how agonist-bound receptors are distinguished 'upstream' by GRKs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!