Estradiol increases mRNA and/or protein expression of the nitric oxide synthase (NOS) isoforms in a variety of tissues including kidney. In this study we determined the relationship between cyclical variations in estradiol levels and renal function and total NO production in the virgin female rat. In addition, we used an aromatase inhibitor (Anastrozole), to inhibit synthesis of estradiol from testosterone. Estradiol levels were higher in proestrus vs. diestrus, and were markedly suppressed by 7 days treatment with aromatase inhibitor. There was no difference in total NO production (from urinary and plasma nitrate+nitrite=NO(X)) between proestrus and diestrus but aromatase inhibition resulted in increases in total NO production. The renal cortical NOS activity and protein abundance also increased in aromatase-inhibited female rats. There were no differences in blood pressure (BP) in any group but the renal vascular resistance (RVR) was low in proestrus, increased in diestrus and did not change further after aromatase inhibition. In summary, the cyclical changes in renal function correlate with estradiol but not NO levels. Pharmacologic castration with aromatase inhibition leads to a marked increase in total and renal NOS. This contrasts to earlier work where surgical castration causes decreased NOS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2926238 | PMC |
http://dx.doi.org/10.1016/j.steroids.2010.06.016 | DOI Listing |
Arch Biochem Biophys
January 2025
Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand. Electronic address:
Breast cancer is one of the most common cancers found in women worldwide. Besides the availability of clinical drugs, drug resistance and considerable side effects are concerning issues driven the needs for the discovery of novel anticancer agents. Aromatase inhibition is one of the effective strategies for management of hormone-dependent breast cancer.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Division of Cancer Sciences, University of Manchester, Manchester, UK.
There has been over 130Â years of research into the treatment of breast cancer using approaches that target oestrogen receptor signalling. Here, we summarise the development of the key pillars of such endocrine therapy, namely, oestrogen deprivation, achieved through ovarian suppression and/or aromatase inhibition, and oestrogen receptor blockade, through selective oestrogen receptor modulators, downregulators and novel compounds entering early phase development. The translation of these compounds from advanced to early breast cancer settings is discussed with a focus on the placebo-controlled breast cancer prevention studies to most accurately describe the side effect profiles of the main approaches.
View Article and Find Full Text PDFReprod Toxicol
January 2025
Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, China. Electronic address:
Breast Cancer Res
January 2025
Department of Epidemiology (EM, JEB) and Nutrition (KJM), Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Kresge 505-B, Boston, MA, 02115, USA.
Background: Alcohol intake is associated with a higher risk of estrogen receptor-positive (ER+) breast cancer (BC), presumably through its confirmed ability to increase sex hormone levels. Whether consuming alcohol within the recommended limit of one serving per day increases sex hormone levels among postmenopausal women taking aromatase inhibitors (AI) to inhibit estrogen production remains unknown. Therefore, we compared sex hormone levels following white wine to levels following white grape juice among ER + BC survivors taking AIs.
View Article and Find Full Text PDFCancer Res
January 2025
Medical College of Wisconsin, Milwaukee, WI, United States.
Despite adjuvant treatment with endocrine therapies, estrogen receptor-positive (ER+) breast cancers recur in a significant proportion of patients. Recurrences are attributable to clinically undetectable endocrine-tolerant persister cancer cells that retain tumor-forming potential. Therefore, strategies targeting such persister cells may prevent recurrent disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!