We previously reported results of a molecular epidemiological study of female and male 1,3-butadiene (BD) exposed Czech workers showing that females appeared to absorb or metabolize less BD per unit exposure concentration than did males, based on metabolite concentrations in urine (Chem. Biol. Interact. 166 (2007) 63-77). However, that unexpected observation could not be verified at the time because the only additional BD metabolite measurement attempted was for 1,2,3,4-diepoxybutane (DEB) as reflected in specific N,N[2,3-dihydroxy-1,4-butyl]valine (pyr-Val) hemoglobin adduct concentrations, which were not quantifiable in any subject with the method then employed. Neither somatic gene mutations nor chromosome aberrations were associated with BD exposure levels in that study, consistent with findings in an earlier Czech study of males only. We have since measured production and accumulation of the 1,2-dihydroxy-3,4-epoxybutane (EBD) metabolite as reflected in N-[2,3,4-trihydroxy-butyl]valine (THB-Val) hemoglobin adduct concentrations. The mean THB-Val concentration was significantly higher in exposed males than in control males (922.3pmol/g and 275.5pmol/g, respectively), but exposed and control females did not differ significantly (224.5pmol/g and 181.1pmol/g, respectively). In both the control and exposed groups mean THB-Val concentrations were significantly higher for males than females. THB-Val concentrations were significantly correlated with mean 8-h TWA exposures for both males and females, but the rate of increase with increasing BD exposure was significantly lower for females. THB-Val concentrations also increased with increasing urine M2 metabolite [isomeric mixture of 1-hydroxy-2-{N-actylcysteinyl}-3-butene and 2-hydroxy-1-{N-acetylcysteinyl}-3-butene] concentrations in both sexes but the rate of increase was also lower in females than in males. There were no significant correlations between THB-Val concentrations and either somatic gene mutations or chromosome aberrations in either males or females. These results using another biomarker to measure a second metabolite of BD support the original conclusion that females absorb or metabolize less BD than males per unit exposure and indicate that the size of the difference increases with exposure. This observation in humans differs from findings in rodents where at prolonged exposures to high BD levels the females form higher amounts of hemoglobin adducts than do males, a difference that disappears at shorter duration lower exposure levels, while female susceptibility to BD induced mutations and tumorgenesis in rodents appears to persist at all BD exposure levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbi.2010.06.017 | DOI Listing |
Chem Biol Interact
December 2010
University of Vermont, Burlington, VT, USA.
We previously reported results of a molecular epidemiological study of female and male 1,3-butadiene (BD) exposed Czech workers showing that females appeared to absorb or metabolize less BD per unit exposure concentration than did males, based on metabolite concentrations in urine (Chem. Biol. Interact.
View Article and Find Full Text PDFRes Rep Health Eff Inst
August 2009
Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA.
Current risk assessments of 1,3-butadiene (BD*) are complicated by limited evidence of its carcinogenicity in humans. Hence, there is a critical need to identify early events and factors that account for the heightened sensitivity of mice to BD-induced carcinogenesis and to deter-mine which animal model, mouse or rat, is the more useful surrogate of potency for predicting health effects in BD-exposed humans. HEI sponsored an earlier investigation of mutagenic responses in mice and rats exposed to BD, or to the racemic mixture of 1,2-epoxy-3-butene (BDO) or of 1,2,3,4-diepoxybutane (BDO2; Walker and Meng 2000).
View Article and Find Full Text PDFChem Biol Interact
March 2007
Department of Environmental Sciences and Engineering, The University of North Carolina, Chapel Hill, NC 27599-7431, USA.
The aim of this review is to summarize our recent data on butadiene (BD) derived hemoglobin adducts as biomarkers for the internal formation of the individual epoxides formed by butadiene (BD). It is well known that BD is oxidized by cytochrome P450s to several epoxides that form DNA and protein adducts. 1,2-Epoxy-3-butene (EB), 1,2;3,4-diepoxybutane (DEB) and 1,2-epoxy-3,4-butanediol (EB-diol) form N-(2-hydroxy-3-butenyl)-valine (HB-Val), N,N-(2,3-dihydroxy-1,4-butadiyl)-valine (pyr-Val) and N-(2,3,4-trihydroxybutyl)-valine (THB-Val) adducts, respectively.
View Article and Find Full Text PDFChem Biol Interact
March 2007
BioMosaics, Inc., 665 Spear Street, Burlington, VT 05401, USA.
Results of a recent molecular epidemiological study of 1,3-butadiene (BD) exposed Czech workers, conducted to compare female to male responses, have confirmed and extended the findings of a previously reported males only study (HEI Research Report 116, 2003). The initial study found that urine concentrations of the metabolites 1,2-dihydroxy-4-(acetyl) butane (M1) and 1-dihydroxy-2-(N-acetylcysteinyl)-3-butene (M2) and blood concentrations of the hemoglobin adducts N-[2-hydroxy-3-butenyl] valine (HB-Val) and N-[2,3,4-trihydroxy-butyl] valine (THB-Val) constitute excellent biomarkers of exposure, both being highly correlated with BD exposure levels, and that GST genotypes modulate at least one metabolic pathway, but that irreversible genotoxic effects such as chromosome aberrations and HPRT gene mutations are neither associated with BD exposure levels nor with worker genotypes (GST [glutathione-S-transferase]-M1, GSTT1, CYP2E1 (5' promoter), CYP2E1 (intron 6), EH [epoxide hydrolase] 113, EH139, ADH [alcohol dehydrogenase]2 and ADH3). The no observed adverse effect level (NOAEL) for chromosome aberrations and HPRT mutations was 1.
View Article and Find Full Text PDFToxicol Ind Health
March 2005
Department of Environmental Education, Kongju National University, Kongju, Chungnam-do, South Korea.
1,3-Butadiene (BD) is a known rodent and probable human carcinogen (IARC, group 2A) or 'known to be a human carcinogen' (Department of Health and Human Services, 2000). Exposure to BD can occur either via petrochemical products or through the general environment. Adducts can be used as biomarkers for biological monitoring of carcinogen exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!