Background: In eukaryotes the transcription initiation by RNA polymerase II requires numerous general and regulatory factors including general transcription factors. The general transcription factor TFIIF controls the activity of the RNA polymerase II both at the initiation and elongation stages. The glioma amplified sequence 41 (GAS41) has been associated with TFIIF via its YEATS domain.

Results: Using GST pull-down assays, we demonstrated that GAS41 binds to both, the small subunit (RAP30) and the large subunit (RAP74) of TFIIF in vitro. The in vivo interaction of GAS41 and endogenous RAP30 and RAP74 was confirmed by co-immunoprecipitation. GAS41 binds to two non-overlapping regions of the C-terminus of RAP30. There is also an ionic component to the binding between GAS41 and RAP30. There was no evidence for a direct interaction between GAS41 and TBP or between GAS41 and RNA polymerase II.

Conclusions: Our results demonstrate binding between endogenous GAS41 and the endogenous TFIIF subunits (RAP30 and RAP74). Since we did not find evidence for a binding of GAS41 to TBP or RNA polymerase II, GAS41 seems to preferentially bind to TFIIF. GAS41 that does not contain a DNA-binding domain appears to be a co-factor of TFIIF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2908078PMC
http://dx.doi.org/10.1186/1471-2199-11-53DOI Listing

Publication Analysis

Top Keywords

rna polymerase
16
gas41
12
general transcription
12
transcription factor
8
factor tfiif
8
gas41 binds
8
interaction gas41
8
gas41 endogenous
8
rap30 rap74
8
binding gas41
8

Similar Publications

Dirofilariasis, caused by the nematode spp., poses significant challenges in diagnosis due to its diverse clinical manifestations and complex life cycle. This comprehensive literature review focuses on the evolution of diagnostic methodologies, spanning from traditional morphological analyses to modern emerging techniques in the context of dirofilariasis diagnosis.

View Article and Find Full Text PDF

Background: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high morbidity and mortality, and easy to develop resistance to chemotherapeutic agents. Telomeres are DNA-protein complexes located at the termini of chromosomes in eukaryotic cells, which are unreplaceable in maintaining the stability and integrity of genome. Telomerase, an RNA-dependent DNA polymerase, play vital role in telomere length maintain, targeting telomerase is a promising therapeutic strategy for cancer.

View Article and Find Full Text PDF

RNA-specific nucleotidyltransferases (rNTrs) add nontemplated nucleotides to the 3 end of RNA. Two noncanonical rNTRs that are thought to be poly(A) polymerases (PAPs) have been identified in the mitochondria of trypanosomes - KPAP1 and KPAP2. KPAP1 is the primary polymerase that adds adenines (As) to trypanosome mitochondrial mRNA 3 tails, while KPAP2 is a non-essential putative polymerase whose role in the mitochondria is ambiguous.

View Article and Find Full Text PDF

may inhibit esophageal squamous cell carcinoma growth and metastasis by regulating the axis.

Transl Cancer Res

December 2024

Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Background: FOXF2, a member of the transcription factor FOX family proteins, plays a key role in tumorigenesis and tumor aggressiveness. However, the potential molecular mechanism of FOXF2 in esophageal squamous cell carcinoma (ESCC) remains largely unknown. Exploring its role and mechanism in ESCC progression may help identify new diagnostic markers and therapeutic targets.

View Article and Find Full Text PDF

Background: Many cancer cells exhibit aberrant metabolic reprogramming through abnormal mitochondrial respiration. Protein tyrosine phosphatase mitochondrial 1 (PTPMT1) is a protein tyrosine phosphatase localized to the mitochondria and linked to mitochondrial respiration. However, the expression and role of PTPMT1 in regulating the biological characteristics of small cell lung cancer (SCLC) has not yet been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!