Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The biofilm-forming phenotype of 14 isolates from four 'nonmain' subspecies of Yersinia pestis was compared with eight isolates from the more commonly studied 'main' or epidemic subspecies of Y. pestis in this study. The four nonmain subspecies are more geographically limited, and are associated with certain mammalian hosts and regions of the Caucasus and Central Asia, whereas the main subspecies spread worldwide during the historic plague pandemics. With the main subspecies pestis, pigmentation on Congo red medium (CR(+)) correlated with biofilm formation on both abiotic and biotic surfaces. Main subspecies pestis strains that do not produce pigmentation on Congo red medium (CR(-)) have a deletion that includes the hmsF and hmsS genes known to be required for biofilm formation. CR(-) strains of the nonmain subspecies, altaica and ulegeica, differed however from pestis and, while defective for biofilms on the two surfaces, both had intact hmsF and hmsS genes. The presence of rcsA was also investigated and results showed that it occurred with a 30-bp insertion in all forms of the subspecies. These findings suggest that biofilms are regulated differently in altaica and ulegeica than they are in pestis and also indicate that the rcsA pseudogene arose early in Y. pestis evolution, increasing the ability of the strain to form biofilm and thereby increasing its effective transmission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-695X.2010.00719.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!