Tissue Eng Part A
Dipartimento di Patologia e Medicina Sperimentale e Clinica, University of Udine, Udine, Italy.
Published: December 2010
Grafts of tissue-engineered bone represent a promising alternative in the treatment of large and small bone defects. Current approaches are often badly tolerated by patients because of invasiveness, ethical problems, culture, and possibility of infection. Autologous grafts have been indicated as a solution to such problems. Because of tissue availability, many have proposed the use of cultured cells derived from bone marrow expanded in culture and induced to differentiate in bone tissue. Data reported in the literature show that it is possible to produce tissue substitutes in vitro indeed, but results are not always concordant regarding the in vitro produced bone quality. In the present work, we investigated bone formation in aggregates of human bone marrow-derived mesenchymal stem cells induced to differentiate in bone. After osteoinduction we characterized the mineral matrix produced using Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray powder diffraction. Cells were obtained from bone marrow, subjected to immunodepletion for CD3, CD11b, CD14, CD16, CD19, CD56, CD66b, and glycophorin A using RosetteSep and cultured in a new formulation of medium for four passages and then were allowed to form spontaneous aggregates. At the end of proliferation before aggregation, cells were analyzed by fluorescent activated cell sorting (FACS) for markers routinely used to characterize expanded mesenchymal stem cells and were found to be remarkably homogeneous for CD29 (99% ± 1%), CD73 (99% ± 1%), CD90 (95% ± 4%), CD105 (96% ± 4%), and CD133 (0% ± 1%) expression. Our results show that not only aggregated cells express the major markers of osteogenic differentiation, such as osteocalcin, osteonectin, osteopontin, and bone sialoprotein, but also the inorganic matrix is made of an apatite structurally and morphologically similar to native bone even without a scaffold.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEA.2009.0750 | DOI Listing |
Sleep Breath
January 2025
Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1 Da Hua Road, Dong Dan, Dongcheng District, Beijing, 100730, PR China.
Purpose: To investigate the relationship between obstructive sleep apnea hypopnea syndrome (OSAHS) severity and fat, bone, and muscle indices.
Methods: This study included 102 patients with OSAHS and retrospectively reviewed their physical examination data. All patients underwent polysomnography, body composition analysis, dual-energy X-ray absorptiometry, computed tomography (CT) and blood test.
Clin Oral Investig
January 2025
Department of Oral and Maxillofacial Surgery, Radboud University Medical Center, Geert Grooteplein 10, Nijmegen, 6525, GA, the Netherlands.
Objectives: To assess the effect of patient positioning and general anesthesia on the condylar position in orthognathic surgery.
Materials And Methods: This prospective study included patients undergoing orthognathic surgery between 2019 and 2020. Four weeks prior to surgery (T0) cone-beam computed tomography (CBCT) scans and intra-oral scans (IOS) were acquired in an upright position.
Tissue Eng Regen Med
January 2025
Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, 172 Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
Background: Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods: Thirty patients (17 male, 13 female; mean age 55.
J Orthop Traumatol
January 2025
Department of Orthopaedic Trauma, Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, 710054, Shaanxi, China.
Background: Clavicle fractures associated with ipsilateral coracoid process fractures are very rare, with limited literature reporting only a few cases. This study reports on 27 patients with ipsilateral concomitant fractures of the clavicle and coracoid process who were followed for more than 12 months.
Material And Methods: This retrospective study reviewed the charts of skeletally mature patients with traumatic ipsilateral clavicle and coracoid process fractures treated at the authors' institution.
Pediatr Radiol
January 2025
Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpasa Medical Faculty, 34098, Cerrahpasa, Istanbul, Turkey.
Background: Heterozygous TRPV4 mutations cause a group of skeletal dysplasias characterized by short stature, short trunk, and skeletal deformities.
Objective: The aim of this study is to compare the natural history of clinical and radiologic features of patients with different TRPV4-related skeletal dysplasias.
Materials And Methods: Thirteen patients with a mutation in TRPV4 were included in the study, and 11 were followed for a median of 6.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.