Cellular processes such as cell cycle progression, mitosis, apoptosis, and cell migration are characterized by well-defined events that are modulated as a function of time. Measuring these events in the context of time and its perturbation by small molecule compounds and RNAi can provide mechanistic information about cellular pathways being affected. We have used impedance-based time-dependent cell response profiling (TCRP) to measure and characterize cellular responses to antimitotic compounds or siRNAs. Our findings indicate that small molecule perturbation of mitosis leads to unique TCRP. We have further used this unique TCRP signature to screen 119 595 compound library and identified novel antimitotic compounds based on clustering analysis of the TCRPs. Importantly, 113 of the 117 hit compounds in the TCRP antimitotic cluster were confirmed as antimitotic based on independent assays, thus establishing the robust predictive nature of this profiling approach. In addition, potent and novel agents that induce mitotic arrest either by directly interfering with tubulin polymerization or by other mechanisms were identified. The TCRP approach allows for a practical and unbiased phenotypic profiling and screening tool for small molecule and RNAi perturbation of specific cellular pathways and time resolution of the TCRP approach can serve as a complement for other existing multidimensional profiling approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac1007877 | DOI Listing |
Hematol Oncol
January 2025
Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Multiple myeloma is a plasma cell malignancy characterized by an abnormal increase in monoclonal immunoglobulins. Despite significant advances in treatment, some patients progress to more aggressive forms of multiple myeloma, including extramedullary disease or plasma cell leukemia. Although the exact molecular mechanisms are not known, several studies have confirmed the involvement of small extracellular vesicle-enriched microRNAs in multiple myeloma progression.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Spine, Orthopaedic Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China.
Osteogenic differentiation of bone marrow stem cells (BMSCs) is essential for bone tissue regeneration and repair. However, this process is often hindered by an unstable differentiation influenced by local microenvironmental factors. While small extracellular vesicles (sEVs) derived from osteogenically induced adipose mesenchymal stem cells (ADSCs) reportedly can promote osteogenic differentiation of BMSCs, the underlying molecular mechanisms remain incompletely understood.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
Nonconventional luminogens have great potential for applications in fields like anti-counterfeiting encryption. But so far, the photoluminescence quantum yield (PLQY) of most of these powders is still relatively low and the persistent room temperature phosphorescence (p-RTP) emission is relatively weak. To improve their PLQY and p-RTP, pressing the powder into tablets has been preliminarily proven to be an effective method, but the specific mechanism has not been fully elucidated yet.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, CRI Center for Chemical Proteomics, Seoul National University, Seoul 08826, Korea.
We developed a design strategy focusing on pivotal secondary structural motifs-α-helix, β-strand, and β-turn-critical for PPI recognition, using a common core skeleton. The resulting peptide-inspired pyrimidodiazepine scaffolds were further subjected to comprehensive phenotypic screening to evaluate their efficacy. Our strategy offers a transformative approach to developing small-molecule PPI modulators with broad therapeutic potential.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
Conjugated polymers have attracted extensive attention as semiconducting materials in wearable and flexible electronics. In this study, we utilize atom-economical Knoevenagel reaction to construct two conjugated polymers, PTDPP-CNTT and PFDPP-CNTT, based on dialdehyde-thiophene/furan-flanked diketopyrrolopyrrole (DPP) and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile (CNTT). The resulting polymers exhibited suitable highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) energy levels, small bandgaps, and broad UV-vis-NIR absorptions (≈400-1000 nm), endowing them with photothermal and balanced ambipolar semiconducting properties with hole and electron mobilities over 10 cmVs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!