Ferritin is an acute-phase reactant that is elevated in the course of infectious, inflammatory, autoimmune, and oncological diseases and the hemophagocytic syndrome. In asymptomatic patients, isolated hyperferritinemia may be due to different causes depending on whether or not it is accompanied by iron overload. Hyperferritinemia values above 300 ng/ml and an excess of body iron levels may be indicative of hemochromatosis. However, if such values develop in the absence of iron overload, they may be secondary to hemochromatosis type 4a (ferroportin disease) or more often to hereditary hyperferritinemia-cataract syndrome (HHCS; Aguilar-Martinez et al., Am J Gastroenterol 100:1185-1194, 2005; Ferrante et al., Eur J Gastroenterol Hepatol 17:1247-1253, 2005). HHCS results from different mutations in the L-ferritin gene (FTL) on chromosome 19 (19q13.1), causing autosomal dominant transmission (Bertola et al., Curr Drug Targets Immune Endocr Metabol Disord 4:93-105, 2004). We present a child with HHCS due to the allelic variant c.-167C>T (C33T) in the iron-responsive element region of the FTL gene. When pediatricians encounter an asymptomatic patient with isolated hyperferritinemia in the absence of iron overload, they should consider the possibility of HHCS, especially if other members of the family have developed cataracts from a young age.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00431-010-1251-2DOI Listing

Publication Analysis

Top Keywords

iron overload
12
hereditary hyperferritinemia-cataract
8
hyperferritinemia-cataract syndrome
8
isolated hyperferritinemia
8
absence iron
8
syndrome family
4
family study
4
study ferritin
4
ferritin acute-phase
4
acute-phase reactant
4

Similar Publications

Hereditary hemochromatosis occurs due to genetic mutations, namely, cysteine-to-tyrosine substitution at amino acid 282 (C282Y) and histidine-to-aspartic acid substitution at 63 (H63D) mutations. The role of H63D mutation in hemochromatosis is less clear, and its penetrance is low even in homozygotes. Therefore, iron overload in H63D heterozygotes is extremely rare and scarcely reported.

View Article and Find Full Text PDF

Hemoglobin H (HbH) disease is associated with anemia, ineffective erythropoiesis, and iron overload. We report a case of a patient with HbH/Hb Constant Spring disease, who was maintained on chronic transfusions as an adult due to symptomatic anemia. Over time, he developed iron overload and was started on chelation therapy but did not have an adequate response to chelation.

View Article and Find Full Text PDF

Exploring the Mechanisms of Iron Overload-Induced Liver Injury in Rats Based on Transcriptomics and Proteomics.

Biology (Basel)

January 2025

Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.

Iron is a trace element that is indispensable for the growth and development of animals. Excessive iron supplementation may lead to iron overload and elevated reactive oxygen species (ROS) production in animals, causing cellular damage. Nevertheless, the precise mechanism by which iron overload causes cell injury remains to be fully elucidated.

View Article and Find Full Text PDF

Spontaneous intracerebral hemorrhagic stroke (ICH) is a highly aggressive disease, with a high incidence and mortality rate. Iron deposition following ICH leads to oxidative damage and motor dysfunction, significantly impacting the overall quality of life for those affected. Here, a polyphenolic nanomedicine, catechin-based polyphenol nanoparticles surface-modified by thiol-terminated poly(ethylene glycol) (CNPs@PEG), was developed through the oxidative polymerization and self-assembly of catechin, a natural compound in tea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!