Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A new drug carrier system based on self-assembly and polymerization of polydiacetylenic amphiphiles is described. Although classical amphiphiles can help in solubilizing hydrophobic molecules upon self-arrangement into a variety of nanometric structures, a greater effect on drug loading was observed for our polymerized micelles as compared to the non-polymerized analogues. This permitted higher aqueous solubilization of lipophilic drugs with low micelle concentration. (14)C labeling of a model drug on one side and of the amphiphile on the other side permitted assessment, after intravenous injection, of biodistribution and excretion profiles of the drug cargo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c004134c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!