The energy landscape, folding pathways and the kinetics of a knotted protein.

PLoS Comput Biol

Department of Chemistry, Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America.

Published: July 2010

The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N or C terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N terminus portion of the knot and a rate-determining step where the C terminus is incorporated. The low-lying minima with the N terminus knotted and the C terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N and C termini into the knot occurs late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895632PMC
http://dx.doi.org/10.1371/journal.pcbi.1000835DOI Listing

Publication Analysis

Top Keywords

folding pathways
8
knotted protein
8
protein folding
8
potential energy
8
folding process
8
folding
7
terminus
5
energy
4
energy landscape
4
landscape folding
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.

Background: Progressive supranuclear palsy (PSP) is a neurodegenerative disorder involving pathological deposition of tau that includes glial inclusions and specific regional vulnerability patterns. Therapeutic developments are hampered by incomplete understanding of disease mechanisms. Few studies have examined its cell type-specific effects.

View Article and Find Full Text PDF

Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Sensorineural hearing loss (SNHL) results from impaired cochlear function and is influenced by genetics, noise exposure, medications, and aging.
  • The role of inflammation, oxidative stress, and processes like apoptosis in SNHL development is acknowledged, but the detailed mechanisms are still unclear.
  • Recent research highlights that endoplasmic reticulum stress (ERS) and the associated cellular responses are significant in the onset and progression of SNHL, potentially offering new avenues for treatment.
View Article and Find Full Text PDF

Advances in the characterization of intrinsically disordered proteins (IDPs) have unveiled a remarkably complex and diverse interaction landscape, including coupled folding and binding, highly dynamic complexes, multivalent interactions, and even interactions between entirely disordered proteins. Here we review recent examples of IDP binding mechanisms elucidated by experimental techniques such as nuclear magnetic resonance spectroscopy, single-molecule Förster resonance energy transfer, and stopped-flow fluorescence. These techniques provide insights into the structural details of transition pathways and complex intermediates, and they capture the dynamics of IDPs within complexes.

View Article and Find Full Text PDF

Assembly of Structurally Simple Icosahedral Viruses.

Subcell Biochem

December 2024

Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.

Icosahedral viruses exhibit elegant pathways of capsid assembly and maturation regulated by symmetry principles. Assembly is a dynamic process driven by consecutive and genetically programmed morphogenetic interactions between protein subunits. The non-symmetric capsid subunits are gathered by non-covalent contacts and interactions in assembly intermediates, which serve as blocks to build a symmetric capsid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!