Long image acquisition times of 60-120 s for cone-beam CT (CBCT) limit the number of patients with lung cancer who can undergo volume image guidance under breathhold. We developed a low-dose dual-energy kilovoltage-megavoltage-cone-beam CT (kVMV-CBCT) based on a clinical treatment unit reducing imaging time to < or =15 s. Simultaneous kVMV-imaging was achieved by dedicated synchronization hardware controlling the output of the linear accelerator (linac) based on detector panel readout signals, preventing imaging artifacts from interference of the linac's MV-irradiation and panel readouts. Optimization was performed to minimize the imaging dose. Single MV-projections, reconstructed MV-CBCT images and images of simultaneous 90 degrees kV- and 90 degrees MV-CBCT (180 degrees kVMV-CBCT) were acquired with different parameters. Image quality and imaging dose were evaluated and compared to kV-imaging. Hardware-based kVMV synchronization resulted in artifact-free projections. A combined 180 degrees kVMV-CBCT scan with a total MV-dose of 5 monitor units was acquired in 15 s and with sufficient image quality. The resolution was 5-6 line pairs cm(-1) (Catphan phantom). The combined kVMV-scan dose was equivalent to a kV-radiation scan dose of approximately 33 mGy. kVMV-CBCT based on a standard linac is promising and can provide ultra-fast online volume image guidance with low imaging dose and sufficient image quality for fast and accurate patient positioning for patients with lung cancer under breathhold.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/55/15/001 | DOI Listing |
Acta Dermatovenerol Croat
November 2024
Constantin A. Dasanu MD, PhD, Lucy Curci Cancer Center, Eisenhower Health, 39000 Bob Hope Dr, Rancho Mirage, CA 92270 , USA;
Erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is currently used in the therapy of several solid malignancies. This agent has been associated with several dermatological side-effects, the most common being papulo-pustular acneiform rash. Herein we describe a unique skin effect in a patient treated with erlotinib for non-small cell lung cancer.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University Suzhou 215006, Jiangsu, China.
Resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is the main cause of mortality in lung cancer. This study aimed to investigate the roles of neuropilin 1 (NRP1) in non-small cell lung cancer (NSCLC). NRP1 expression was assessed in tumor tissues from patients with osimertinib-resistant (OR) NSCLC and osimertinib-responsive NSCLC as well as in patients with paracancerous NSCLC tissues who did not undergo radiotherapy or chemotherapy.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University Guangzhou 510260, Guangdong, China.
This study aimed to explore the risk factors for mediastinal lymph node metastases (MLNM) in patients with early-stage non-small-cell lung cancer (NSCLC) and to establish a predictive model. A retrospective analysis was conducted on the clinical data from NSCLC patients treated at the Second Affiliated Hospital of Guangzhou Medical University and the First Affiliated Dongguan Hospital of Guangdong Medical University between March 2021 and March 2023. Baseline clinical data, laboratory parameters, and pathological features were collected and analyzed.
View Article and Find Full Text PDFCancer cells within tumors exhibit a wide range of phenotypic states driven by non-genetic mechanisms in addition to extensively studied genetic alterations. Conversions among cancer cell states can result in intratumoral heterogeneity which contributes to metastasis and development of drug resistance. However, mechanisms underlying the initiation and/or maintenance of such phenotypic plasticity are poorly understood.
View Article and Find Full Text PDFBreath biopsy is emerging as a rapid and non-invasive diagnostic tool that links exhaled chemical signatures with specific medical conditions. Despite its potential, clinical translation remains limited by the challenge of reliably detecting endogenous, disease-specific biomarkers in breath. Synthetic biomarkers represent an emerging paradigm for precision diagnostics such that they amplify activity-based biochemical signals associated with disease fingerprints.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!